Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.

Slides:



Advertisements
Similar presentations
Order-k Voronoi Diagram in the Plane
Advertisements

Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Planar Subdivision Induced by planar embedding of a graph. Connected if the underlying graph is. edge vertex hole in f face f disconnected subdivision.
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Planar straight line graph A planar straight line graph (PSLG) is a planar embedding of a planar graph G = (V, E) with: 1.each vertex v  V mapped to a.
Map Overlay Algorithm. Birch forest Wolves Map 1: Vegetation Map 2: Animals.
2/14/13CMPS 3120 Computational Geometry1 CMPS 3120: Computational Geometry Spring 2013 Planar Subdivisions and Point Location Carola Wenk Based on: Computational.
Computational Geometry, WS 2007/08 Lecture 17 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften.
Convex Hulls Computational Geometry, WS 2007/08 Lecture 2 – Supplementary Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Overlay of Two Subdivisions
Lecture 7: Voronoi Diagrams Presented by Allen Miu Computational Geometry September 27, 2001.
Convex Hulls Computational Geometry, WS 2006/07 Lecture 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Klee’s Measure Problem Computational Geometry, WS 2007/08 Group Work Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
The Half-Edge Data Structure Computational Geometry, WS 2007/08 Lecture 3, Part III Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part IV Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 2 Line Segment Intersection Computational Geometry Prof.Dr.Th.Ottmann 1 Line Segment Intersection Motivation: Computing the overlay of several.
The Half-Edge Data Structure
Delaunay Triangulation Computational Geometry, WS 2006/07 Lecture 11 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
1 Lecture 8: Voronoi Diagram Computational Geometry Prof. Dr. Th. Ottmann Voronoi Diagrams Definition Characteristics Size and Storage Construction Use.
Line Segment Intersection Computational Geometry, WS 2007/08 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 l-Monotone Convex polygons are easy to triangulate. Unfortunately the partition.
The Lower Envelope: The Pointwise Minimum of a Set of Functions Computational Geometry, WS 2006/07 Lecture 4 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Lecture 12 : Special Case of Hidden-Line-Elimination Computational Geometry Prof. Dr. Th. Ottmann 1 Special Cases of the Hidden Line Elimination Problem.
Special Cases of the Hidden Line Elimination Problem Computational Geometry, WS 2007/08 Lecture 16 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen,
Voronoi Diagrams Computational Geometry, WS 2006/07 Lecture 10 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Duality and Arrangements Computational Geometry, WS 2007/08 Lecture 6 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Introduction to Computational Geometry Computational Geometry, WS 2007/08 Lecture 1 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 10 : Delaunay Triangulation Computational Geometry Prof. Dr. Th. Ottmann 1 Overview Motivation. Triangulation of Planar Point Sets. Definition.
Persistent Data Structures Computational Geometry, WS 2007/08 Lecture 12 Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen, Institut.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Lecture 3: Polygon Triangulation Computational Geometry Prof. Dr. Th. Ottmann Polygon Triangulation Motivation: Guarding art galleries Art gallery theorem.
Geometric Data Structures Computational Geometry, WS 2007/08 Lecture 13 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Hidden-Line Elimination Computational Geometry, WS 2006/07 Lecture 14 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2007/08 Lecture 7, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 8 : Arrangements and Duality Computational Geometry Prof. Dr. Th. Ottmann 1 Duality and Arrangements Duality between lines and points Computing.
Point Location Computational Geometry, WS 2007/08 Lecture 5 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für.
Closest Pair of Points Computational Geometry, WS 2006/07 Lecture 9, Part II Prof. Dr. Thomas Ottmann Khaireel A. Mohamed Algorithmen & Datenstrukturen,
Polygon Triangulation Computational Geometry, WS 2007/08 Lecture 9 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Orthogonal Range Searching Computational Geometry, WS 2006/07 Lecture 13 - Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für.
Lecture 6: Point Location Computational Geometry Prof. Dr. Th. Ottmann 1 Point Location 1.Trapezoidal decomposition. 2.A search structure. 3.Randomized,
Voronoi Diagrams.
Polygon Triangulation Computational Geometry, WS 2006/07 Lecture 8, Part 2 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Linear Programming Computational Geometry, WS 2006/07 Lecture 5, Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part II Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 2 Line Segment Intersection Computational Geometry Prof.Dr.Th.Ottmann 1 Line Segment Intersection Motivation: Computing the overlay of several.
Art Gallery Theorem Computational Geometry, WS 2006/07 Lecture 8, Part 1 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Duality and Arrangements Computational Geometry, WS 2006/07 Lecture 7 Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät.
Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part I Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik.
Lecture 2 Line Segment Intersection Computational Geometry Prof.Dr.Th.Ottmann 1 Line Segment Intersection Motivation: Computing the overlay of several.
UNC Chapel Hill M. C. Lin Line Segment Intersection Chapter 2 of the Textbook Driving Applications –Map overlap problems –3D Polyhedral Morphing.
Line Arrangement Chapter 6. Line Arrangement Problem: Given a set L of n lines in the plane, compute their arrangement which is a planar subdivision.
Planar Subdivision Induced by planar embedding of a graph. Connected if the underlying graph is. edge vertex disconnected subdivision Complexity = #vertices.
Arrangements and Duality Sanjay Sthapit Comp290 10/6/98.
Space Figures & Nets, Surface Areas of Prisms & Cylinders Unit 5, Lesson 1 chapter%20ten.ppt.
Vertices, Edges and Faces By Jordan Diamond. Vertices In geometry, a vertices is a special kind of point which describes the corners or intersections.
Arrangements and Duality Motivation: Ray-Tracing Fall 2001, Lecture 9 Presented by Darius Jazayeri 10/4/01.
Robert Pless, CS 546: Computational Geometry Lecture #3 Last Time: Plane Sweep Algorithms, Segment Intersection, + (Element Uniqueness)
12.1 Exploring Solids.
An Introduction to Computational Geometry Joseph S. B. Mitchell Stony Brook University.
Section 12-1 Exploring Solids. Polyhedron Three dimensional closed figure formed by joining three or more polygons at their side. Plural: polyhedra.
polyhedron a three- dimensional figure whose surfaces are polygons faces edge vertex.
Solid Modeling Dr. Scott Schaefer.
An Introduction to Computational Geometry
Computational Geometry 2
Overlay of Two Subdivisions
Presentation transcript:

Line Segment Intersection Computational Geometry, WS 2006/07 Lecture 3 – Part III Prof. Dr. Thomas Ottmann Algorithmen & Datenstrukturen, Institut für Informatik Fakultät für Angewandte Wissenschaften Albert-Ludwigs-Universität Freiburg

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann2 Line Segment Intersection Motivation: Computing the overlay of several maps The Sweep-Line-Paradigm: A visibility problem Line Segment Intersection Overlay of planar subdivisions

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann3 Maps

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann4 Motivation Thematic map overlay in Geographical Information Systems road riveroverlaid maps 1. Thematic overlays provide important information. 2. Roads and rivers can both be regarded as networks of line segments.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann5 Planar Subdivisions Euler Formula: v – e + f = 2 edges e vertices v faces f

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann6 Overlay of Two Subdivisions

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann7 Doubly Connected Edge List (DCEL) Example node 1 = { ((1, 2)), 12 } face 1 = { 15, [67] } halfedge 54 = { 5, 45, 1, 43, 15 } 3 Records: vertex { Coordinates Incident Edge }; face { Outer Component Inner Component }; halfedge { Origin Twin Incident Face Next Prev };

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann8 Computing the Overlay of Two Subdivisions Halfedge records that are not intersected can be reused. Plane sweep!

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann9 Halfedges and Vertices Example: Edge e of one component cuts a node of the other.

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann10 Halfedges and Vertices Example: Edge e of one component cuts a node of the other. Generate two halfedge records e´, e´´ with v as origin. Set twin-pointers and double edges. Set Next and Prev at end points of e. Set Next and Prev at node v. Time O(1 + deg(v)) at node v. Time O(n log n + k log n) altogether, k complexity of O(S1, S2)

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann11 Faces Difference inside and outside by 180° f

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann12 Faces c6 c7 c3 c5 c1 c2 c4 c8 Difference same surface Applies only to linked nodes! c1 c6 c3 c2 c5 c8 c4 c7 Outside Hole s

Computational Geometry, WS 2006/07 Prof. Dr. Thomas Ottmann13 Boolean Operations For Polygons P1 P2 P1 AND P2 P1 OR P2 P1 – P2 (new surfaces in overlap) (all surfaces in overlap) (old faces) - (newly generated faces) Let n = |P1| + |P2| All 3 operations can be calculated in O(n log n + k log n), k is output size