SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di Bologna Jürgen GAUSS Institut für Physikalische Chemie, University of Mainz Columbus — June 26, 2009
1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations
1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations
MILLIMETER-WAVE EXPERIMENTAL SET-UP BLOCK DIAGRAM OF THE GHz SPECTROMETER BLOCK DIAGRAM OF THE GHz SPECTROMETER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL GHz f RF 20 MHz 90 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG fGfG MULTIPLIER InSb DETECTOR PREAMPL LOCK - IN 10 MHz freq. standard kHz ref GUNN DIODES THERMOSTAT or liquid N 2 system
Measurements: Lamb-dip technique Corner cube mirror Cell InSb detector Polarizer Frequency modulated source Scheme of the radiation path Using free-space cell G. Cazzoli & L. Dore, J. Mol. Spectrosc. 143, 231 (1990).
1) Partial saturation 2) Only Doppler profile 3) Rad: back and forward Measurements: Lamb-dip technique + v za - v za vz= 0vz= 0vz= 0vz= 0
Measurements: Lamb-dip technique CH 2 BrF Doppler Lamb-dip
1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations
Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Effective Hamiltonian: determination of H Rot via quantum chemistry
Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Effective Hamiltonian: determination of H Rot via quantum chemistry
Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Spin-rotation interactions Effective Hamiltonian: determination of H Rot via quantum chemistry
Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Spin-rotation interactions Spin-spin (direct) interactions interactions Effective Hamiltonian: determination of H Rot via quantum chemistry
Quantum-Chemical Calculation of Spectroscopic Parameters Spin-rotation interaction Spin-rotation interaction second-order property: requires second derivatives of energy
requires equilibrium geometry: no „electronic property“ addditional contribution due to: indirect spin-spin coupling (usually negligible) Quantum-Chemical Calculation of Spectroscopic Parameters Spin-spin coupling Spin-spin coupling DIPOLAR SPIN-SPIN COUPLING TENSOR vibrational corrections (anharmonic force field)
Beyond the Rigid-Rotator Approximation COUPLING of ROTATIONAL and VIBRATIONAL MOTION Vibrational corrections to properties: PERTURBATION THEORY starting from the rigid-rotator harmonic oscillator approximation the rigid-rotator harmonic oscillator approximation Vibrational corrections require: anharmonic force field calculations anharmonic force field calculations
Accurate hyperfine parameters >>>> Main requirements : - accurate method - cc basis set - CV corrections - vibrational corrections
Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set - CV corrections - vibrational corrections
Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n Q] - CV corrections - vibrational corrections
Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n Q] - CV corrections [additivity/CV bases] - vibrational corrections
Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n Q] - CV corrections [additivity/CV bases] - vibrational corrections [ff: -correlated method method -basis: n T]
1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations RESULTS RESULTS
(values in kHz) Theory F C N (C xx =C yy ) 2.71 C K (C zz ) H C xx 0.64 C yy C zz C xz 0.60 C zx 3.03 H-F -3D 1 (1.5 D zz ) D 2 ( (D xx -D yy )/4 ) H-H 1.5D 3 (1.5 D zz ) SiH 3 F 28 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ
28 SiH 3 F 28 SiH 3 F
(values in kHz) TheoryExperiment F C N (C xx =C yy ) fixed C K (C zz ) (35) H C xx 0.64 C yy -1.19 C zz -6.64 C xz 0.60 C zx 3.03 H-F -3D 1 (1.5 D zz ) -0.5D 2 ( (D xx -D yy )/4 ) -1.75 H-H 1.5D 3 (1.5 D zz ) 12.46 28 SiH 3 F 28 SiH 3 F
(Values in kHz) Theory F C N (C xx =C yy ) 2.69 C K (C zz ) Si C N (C xx =C yy ) C K (C zz ) H C xx 0.63 C yy C zz C xz 0.59 C zx 3.03 F-Si 1.5D 3 (1.5 D zz ) F-H -3D 1 (1.5 D zz ) D 2 ((D xx -D yy )/4) 4.84 Si-H -3D 1 (1.5 D zz ) D 2 ((D xx -D yy )/4) H-H 1.5D 3 (1.5 D zz ) SiH 3 F 29 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ
29 SiH 3 F 29 SiH 3 F
recorded in natural abundance
(values in kHz) Theory F C N (C xx =C yy ) 2.23 C K (C zz ) SiH 3 F 30 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ
30 SiH 3 F 30 SiH 3 F
recorded in natural abundance
2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure
2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure
Empirical equilibrium structure from EXPERIMENT (various isotopic species) From THEORY (cubic force field)
1) 28 SiH 3 F: A 0 & B 0 1) 28 SiH 3 F: A 0 & B 0 2) 28 SiD 3 F: A 0 & B 0 2) 28 SiD 3 F: A 0 & B 0 3) 29 SiH 3 F: B 0 3) 29 SiH 3 F: B 0 4) 29 SiD 3 F: B 0 4) 29 SiD 3 F: B 0 5) 30 SiH 3 F: B 0 5) 30 SiH 3 F: B 0 6) 30 SiD 3 F: B 0 6) 30 SiD 3 F: B 0 7) 28 SiHD 2 F: A 0, B 0 & C 0 7) 28 SiHD 2 F: A 0, B 0 & C 0 8) 28 SiH 2 DF: A 0, B 0 & C 0 8) 28 SiH 2 DF: A 0, B 0 & C 0 B 0 from EXPERIMENT (various isotopic species) (various isotopic species) - harmonic ff: analytic 2nd deriv. of E - anharmonic part: numerical differ. Vibrational Corrections from THEORY (cubic force field: (all)CCSD(T)/CVTZ ) Actual FIT: Actual FIT: moments of inertia
Computation of Cubic and Quartic Force Fields cubic force fields: cubic force fields: single numerical differentiation along q r quartic force fields: quartic force fields: double numerical differentiation along q r Schneider & Thiel, Chem. Phys. Lett. 157, 367 (1989) Stanton et al., J. Chem. Phys. 108, 7190 (1998) C FOUR : THEORY: Cubic Force Field: (ae)CCSD(T)/cc-pCVTZ (ae)CCSD(T)/cc-pCVTZ
2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure
Best estimated equilibrium structure - geometry optimization : (bases: cc-pVn Z, n =Q,5,6; cc-pCV5Z) - full-T corrections : (basis: cc-pVTZ) - pert-Q corrections : (basis: cc-pVDZ) - on the whole :
2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure RESULTS RESULTS
(dist: Å / ang: º) F-SiSi-H HSiF CCSD(T)/VQZ CCSD(T)/V5Z CCSD(T)/V6Z CBS CBS+CV CBS+CV+full-T CBS+CV+full-T+(Q) Pure ab initio equilibrium structure: basis set convergence and higher excitations
EQUILIBRIUM STRUCTURE: pure ab initio structure vs semi-experimental geometry (dist: Å / ang: º) F-SiSi-H HSiF CBS+CV+full-T+(Q) Semi-experimental [uncertainties: 3 ] (1)1.4698(2)108.29(2)
THANK YOU for your attention!! THANK YOU for your attention!!