SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di.

Slides:



Advertisements
Similar presentations
Introduction to Computational Chemistry NSF Computational Nanotechnology and Molecular Engineering Pan-American Advanced Studies Institutes (PASI) Workshop.
Advertisements

High sensitivity CRDS of the a 1 ∆ g ←X 3 Σ − g band of oxygen near 1.27 μm: magnetic dipole and electric quadrupole transitions in different bands of.
Conical Intersections between Vibrationally Adiabatic Surfaces in Methanol Mahesh B. Dawadi and David S. Perry Department of Chemistry, The University.
Microwave spectroscopy of 2-furancarboxylic acid Roman A. Motiyenko, Manuel Goubet, Laurent Margulès, Georges Wlodarczak PhLAM Laboratory, University Lille.
Cristina PUZZARINI Dip. di Chimica “G. Ciamician”, Università di Bologna QUANTUM-CHEMICAL CALCULATIONS of SPECTROSCOPIC PARAMETERS for ROTATIONAL SPECTROSCOPY:
E QUILIBRIUM S TRUCTURE OF THE S IMPLE S KEW C HAIN M OLECULE HSOH 61 th International Symposium on Molecular Spectroscopy, Ohio June, Oliver.
Ab initio REMPI Erlendur Jónsson. MSc project Electronically excited states of HX(H 2 O) n After some trial calculations, this morphed into just calculations.
Calculation of Molecular Structures and Properties Molecular structures and molecular properties by quantum chemical methods Dr. Vasile Chiş Biomedical.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
Interaction of the hyperfine coupling and the internal rotation in methylformate M. TUDORIE, D. JEGOUSO, G. SEDES, T. R. HUET, Laboratoire de Physique.
VADIM L. STAKHURSKY *, LILY ZU †, JINJUN LIU, TERRY A. MILLER Laser Spectroscopy Facility, Department of Chemistry, The Ohio State University 120 W. 18th.
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
The complete molecular geometry of salicyl aldehyde from rotational spectroscopy Orest Dorosh, Ewa Białkowska-Jaworska, Zbigniew Kisiel, Lech Pszczółkowski,
Columbus, June , 2005 Stark Effect in X 2 Y 4 Molecules: Application to Ethylene M. ROTGER, W. RABALLAND, V. BOUDON, and M. LOËTE Laboratoire de.
June 18, nd Symp. on Molec. Spectrosc. The Pure Rotational Spectra of VN (X 3  r ) and VO (X 4  - ): A Study of the Hyperfine Interactions Michael.
1 The Structure and Ring Puckering Barrier of Cyclobutane: A Theoretical Study Sotiris S. Xantheas, Thomas A. Blake Environmental Molecular Sciences Laboratory.
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
The 68 th International Symposium on Molecular Spectroscopy, June 2013 Fang Wang a, Allan Adam b and Timothy C. Steimle Dept. Chem. & BioChem., Arizona.
Zeinab. T. Dehghani, A. Mizoguchi, H. Kanamori Department of Physics, Tokyo Institute of Technology Millimeter-Wave Spectroscopy of S 2 Cl 2 : A Candidate.
High-accuracy ab initio calculation of metal quadrupole-coupling parameter Lan Cheng, John Stanton, and Jürgen Gauss Department of Chemistry, University.
The effective Hamiltonian for the ground state of 207 Pb 19 F and the fine structure spectrum Trevor J. Sears Brookhaven National Laboratory and Stony.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Submillimeter-wave lines of H 2 D + and D 2 H + as probes into chemistry in cold dark clouds T. Amano Institute for Astrophysics and Planetary Sciences.
Volker Lutter, Laborastrophysik, Universität Kassel 69 th ISMS Champaign-Urbana, Illinois HIGH RESOLUTION INFRARED SPECTROSCOPY AND SEMI-EXPERIMENTAL STRUCTURES.
A Practical Procedure for ab initio Determination of Vibrational Spectroscopic Constants, Resonances, and Polyads William F. Polik Hope College, Holland,
Pressure-broadening of water lines in the THz frequency region: improvements and confirmations for spectroscopic databases G. Cazzoli, C. Puzzarini Dipartimento.
61st OSU International Symposium on Molecular Spectroscopy RI12 Rotational spectrum, electric dipole moment and structure of salicyl aldehyde Zbigniew.
TURBOMOLE Lee woong jae.
Equilibrium Molecular Structure and Spectroscopic Parameters of Methyl Carbamate J. Demaison, A. G. Császár, V. Szalay, I. Kleiner, H. Møllendal.
A LABORATORY AND THEORETICAL INVESTIGATION OF THE SILICON SULFUR MOLECULES H 2 SiS AND Si 2 S. MICHAEL C. MCCARTHY 1, PATRICK THADDEUS 1, HARSHAL GUPTA.
THE ANALYSIS OF HIGH RESOLUTION SPECTRA OF ASYMMETRICALLY DEUTERATED METHOXY RADICALS CH 2 DO AND CHD 2 O (RI09) MING-WEI CHEN 1, JINJUN LIU 2, DMITRY.
Antal Zoltan-PhD candidate 6304-Computational Chemistry March 2010.
+ MILLIMETER-WAVE SPECTROSCOPY OF ETHYLMERCURY HYDRIDE Manuel Goubet, Roman A. Motiyenko, Laurent Margulès Laboratoire PhLAM, Université Lille 1 Jean-Claude.
The Pure Rotational Spectrum of TiCl + (X 3  r ) by Velocity Modulation Spectroscopy DeWayne T. Halfen and Lucy M. Ziurys Department of Chemistry Department.
1 The rotational spectrum of 13 CH 3 NH 2 up to 1 THz Roman A. Motiyenko, Laurent Margulès PhLAM, Université Lille 1 Vadim Ilyushin Institute of Radio.
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY OF CYCLOHEXOXY
61 st Symposium on Molecular Spectroscopy June 19, 2006  -doubling in High Angular Momentum States: High Resolution Spectroscopy of CoF (X 3  i ) M.
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
Multiply Charged Ions Quantum Chemical Computations Trento, May 2002 Lecture 2.
ABSOLUTE 17 O NMR SCALE: a JOINT ROTATIONAL SPECTROSCOPY and QUANTUM-CHEMISTRY STUDY Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G.
Mohammed Gharaibeh, Fumie X. Sunahori, and Dennis J. Clouthier Department of Chemistry, University of Kentucky Riccardo Tarroni Dipartimento di Chimica.
Rotational Spectra Of Cyclopropylmethyl Germane And Cyclopropylmethyl Silane: Dipole Moment And Barrier To Methyl Group Rotation Rebecca A. Peebles, Sean.
0 ipc kiel The rotational spectrum of the pyrrole-ammonia complex Heinrich Mäder, Christian Rensing and Friedrich Temps Institut für Physikalische Chemie.
Laboratory of Millimetre-wave Spectroscopy of Bologna The ROTATIONAL SPECTRUM of HDO : ACCURATE SPECTROSCOPIC and HYPERFINE PARAMETERS G. Cazzoli*, V.
Laboratory of Millimetre-wave Spectroscopy of Bologna LABORATORY MEASUREMENTS in SUPPORT of ASTRONOMICAL OBSERVATIONS: ROTATIONAL SPECTROSCOPY up to the.
1 The r 0 Structural Parameters of Equatorial Bromocyclobutane, Conformational Stability from Temperature Dependent Infrared Spectra of Xenon Solutions,
THE J = 1 – 0 ROTATIONAL TRANSITIONS OF 12 CH +, 13 CH +, AND CD + T. Amano Department of Chemistry and Department of Physics and Astronomy The University.
Microwave Spectroscopy and Internal Dynamics of the Ne-NO 2 Van der Waals Complex Brian J. Howard, George Economides and Lee Dyer Department of Chemistry,
Pure Rotational Spectra of the Rare Isotopologues of TiO (X 3 Δ r ) Andrew P. Lincowski, DeWayne T. Halfen, and Lucy M. Ziurys Department of Chemistry.
The Rotational Spectrum of the Water–Hydroperoxy Radical (H 2 O–HO 2 ) Complex Kohsuke Suma, Yoshihiro Sumiyoshi, and Yasuki Endo Department of Basic Science,
Microwave Spectroscopic Investigations of the Xe-H 2 O and Xe-(H 2 O) 2 van der Waals Complexes Qing Wen and Wolfgang Jäger Department of Chemistry, University.
Spectroscopic and Ab Initio Studies of the Open-Shell Xe-O 2 van der Waals Complex Qing Wen and Wolfgang Jäger Department of Chemistry, University of Alberta,
Rotational Spectra of Adducts of Formaldehyde with Freons Qian Gou, 1 Gang Feng, 1 Luca Evangelisti, 1 Montserrat Vallejo-López, 2 Alberto Lesarri, 2 Walther.
Jun 18th rd International Symposium on Molecular Spectroscopy Microwave spectroscopy o f trans-ethyl methyl ether in the torsionally excited state.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Torsion-mediated spin-rotation hyperfine splittings in methanol (at moderate to high J values) Li-Hong Xu – University of New Brunswick 2 expt labs: NNOV.
Bryan Changala JILA & Dept. of Physics, Univ. of Colorado Boulder
Rotational spectra of C2D4-H2S, C2D4-D2S, C2D4-HDS and 13CH2CH2-H2S complexes: Molecular symmetry group analysis Mausumi Goswami and E. Arunan Inorganic.
Structure and tunneling dynamics of gauche-1,3-butadiene
MICROWAVE AND FIR SPECTROSCOPY OF DIMETHYLSULFIDE IN THE GROUND, FIRST AND SECOND EXCITED TORSIONAL STATES V. Ilyushin1, I. Armieieva1, O. Dorovskaya1,
Stéphane Bailleux University of Lille
Carlos Cabezas and Yasuki Endo
INFRARED SPECTROSCOPY OF DISILICON-CARBIDE, Si2C
Theoretical Prediction of the Rotational Constants for
3-Dimensional Intermolecular Potential Energy Surface of Ar-SH(2Pi)
Stéphane Bailleux Nitrosyl iodide, INO: millimeter-wave spectroscopy guided by ab initio quantum chemical computation.
Threshold Ionization and Spin-Orbit Coupling of CeO
F H F O Semiexperimental structure of the non rigid BF2OH molecule (difluoroboric acid) by combining high resolution infrared spectroscopy and ab initio.
Daniel A. Obenchain, Derek S. Frank, Stewart E. Novick,
Michael A. Flory Shawn K. McLamarrah Lucy M. Ziurys
Presentation transcript:

SILYL FLUORIDE: LAMB-DIP SPECTRA and EQUILIBRIUM STRUCTURE Cristina PUZZARINI and Gabriele CAZZOLI Dipartimento di Chimica “G. Ciamician”, Università di Bologna Jürgen GAUSS Institut für Physikalische Chemie, University of Mainz Columbus — June 26, 2009

1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations

1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations

MILLIMETER-WAVE EXPERIMENTAL SET-UP BLOCK DIAGRAM OF THE GHz SPECTROMETER BLOCK DIAGRAM OF THE GHz SPECTROMETER SYNTH 10 kHz-1 GHz MULT fSfS nfSnfS MIX MULT SYNCR ref: 20 MHz RF OSCILL GHz f RF 20 MHz 90 MHz |f G - mf RF | GUNN P. SUPPLY and SYNCR ref: 73 MHz |f RF - nf S | HP8642A SYNTH MIX corr fGfG fGfG MULTIPLIER InSb DETECTOR PREAMPL LOCK - IN 10 MHz freq. standard kHz ref GUNN DIODES THERMOSTAT or liquid N 2 system

Measurements: Lamb-dip technique Corner cube mirror Cell InSb detector Polarizer Frequency modulated source Scheme of the radiation path Using free-space cell G. Cazzoli & L. Dore, J. Mol. Spectrosc. 143, 231 (1990).

1) Partial saturation 2) Only Doppler profile 3) Rad: back and forward Measurements: Lamb-dip technique + v za - v za vz= 0vz= 0vz= 0vz= 0

Measurements: Lamb-dip technique CH 2 BrF Doppler Lamb-dip

1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations

Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Effective Hamiltonian: determination of H Rot via quantum chemistry

Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Effective Hamiltonian: determination of H Rot via quantum chemistry

Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Spin-rotation interactions Effective Hamiltonian: determination of H Rot via quantum chemistry

Parameters of Rotational Spectroscopy Rotational Hamiltonian Rotational constants Nuclear quadrupole coupling constants Spin-rotation interactions Spin-spin (direct) interactions interactions Effective Hamiltonian: determination of H Rot via quantum chemistry

Quantum-Chemical Calculation of Spectroscopic Parameters Spin-rotation interaction Spin-rotation interaction second-order property: requires second derivatives of energy

requires equilibrium geometry: no „electronic property“ addditional contribution due to:  indirect spin-spin coupling (usually negligible) Quantum-Chemical Calculation of Spectroscopic Parameters Spin-spin coupling Spin-spin coupling DIPOLAR SPIN-SPIN COUPLING TENSOR  vibrational corrections (anharmonic force field)

Beyond the Rigid-Rotator Approximation COUPLING of ROTATIONAL and VIBRATIONAL MOTION  Vibrational corrections to properties: PERTURBATION THEORY starting from the rigid-rotator harmonic oscillator approximation the rigid-rotator harmonic oscillator approximation Vibrational corrections require: anharmonic force field calculations anharmonic force field calculations

Accurate hyperfine parameters >>>> Main requirements : - accurate method - cc basis set - CV corrections - vibrational corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set - CV corrections - vibrational corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections - vibrational corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections [additivity/CV bases] - vibrational corrections

Accurate hyperfine parameters >>>> Main requirements : - accurate method [CCSD(T)] - cc basis set [n  Q] - CV corrections [additivity/CV bases] - vibrational corrections [ff: -correlated method method -basis: n  T]

1) Hyperfine Structure: - Instrument & Technique - Instrument & Technique - Theory & Computations - Theory & Computations RESULTS RESULTS

(values in kHz) Theory F C N (C xx =C yy ) 2.71 C K (C zz ) H C xx 0.64 C yy C zz C xz 0.60 C zx 3.03 H-F -3D 1 (1.5 D zz ) D 2 ( (D xx -D yy )/4 ) H-H 1.5D 3 (1.5 D zz ) SiH 3 F 28 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ

28 SiH 3 F 28 SiH 3 F

(values in kHz) TheoryExperiment F C N (C xx =C yy ) fixed C K (C zz ) (35) H C xx 0.64 C yy -1.19 C zz -6.64 C xz 0.60 C zx 3.03 H-F -3D 1 (1.5 D zz )  -0.5D 2 ( (D xx -D yy )/4 ) -1.75 H-H 1.5D 3 (1.5 D zz ) 12.46 28 SiH 3 F 28 SiH 3 F

(Values in kHz) Theory F C N (C xx =C yy ) 2.69 C K (C zz ) Si C N (C xx =C yy ) C K (C zz ) H C xx 0.63 C yy C zz C xz 0.59 C zx 3.03 F-Si 1.5D 3 (1.5 D zz ) F-H -3D 1 (1.5 D zz ) D 2 ((D xx -D yy )/4) 4.84 Si-H -3D 1 (1.5 D zz ) D 2 ((D xx -D yy )/4) H-H 1.5D 3 (1.5 D zz ) SiH 3 F 29 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ

29 SiH 3 F 29 SiH 3 F

recorded in natural abundance

(values in kHz) Theory F C N (C xx =C yy ) 2.23 C K (C zz ) SiH 3 F 30 SiH 3 F C FOUR : THEORY: Equilibrium: (ae)CCSD(T)/aug-cc-pCVQZ Vib. Corrections: (ae)CCSD(T)/cc-pCVTZ

30 SiH 3 F 30 SiH 3 F

recorded in natural abundance

2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure

2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure

Empirical equilibrium structure from EXPERIMENT (various isotopic species) From THEORY (cubic force field)

1) 28 SiH 3 F: A 0 & B 0 1) 28 SiH 3 F: A 0 & B 0 2) 28 SiD 3 F: A 0 & B 0 2) 28 SiD 3 F: A 0 & B 0 3) 29 SiH 3 F: B 0 3) 29 SiH 3 F: B 0 4) 29 SiD 3 F: B 0 4) 29 SiD 3 F: B 0 5) 30 SiH 3 F: B 0 5) 30 SiH 3 F: B 0 6) 30 SiD 3 F: B 0 6) 30 SiD 3 F: B 0 7) 28 SiHD 2 F: A 0, B 0 & C 0 7) 28 SiHD 2 F: A 0, B 0 & C 0 8) 28 SiH 2 DF: A 0, B 0 & C 0 8) 28 SiH 2 DF: A 0, B 0 & C 0 B 0 from EXPERIMENT (various isotopic species) (various isotopic species) - harmonic ff: analytic 2nd deriv. of E - anharmonic part: numerical differ. Vibrational Corrections from THEORY (cubic force field: (all)CCSD(T)/CVTZ ) Actual FIT: Actual FIT: moments of inertia

Computation of Cubic and Quartic Force Fields cubic force fields: cubic force fields: single numerical differentiation along q r quartic force fields: quartic force fields: double numerical differentiation along q r Schneider & Thiel, Chem. Phys. Lett. 157, 367 (1989) Stanton et al., J. Chem. Phys. 108, 7190 (1998) C FOUR : THEORY: Cubic Force Field: (ae)CCSD(T)/cc-pCVTZ (ae)CCSD(T)/cc-pCVTZ

2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure

Best estimated equilibrium structure - geometry optimization : (bases: cc-pVn Z, n =Q,5,6; cc-pCV5Z) - full-T corrections : (basis: cc-pVTZ) - pert-Q corrections : (basis: cc-pVDZ) - on the whole :

2) Equilibrium Structure: - semi-exp structure - semi-exp structure - pure ab initio structure - pure ab initio structure RESULTS RESULTS

(dist: Å / ang: º) F-SiSi-H  HSiF CCSD(T)/VQZ CCSD(T)/V5Z CCSD(T)/V6Z CBS CBS+CV CBS+CV+full-T CBS+CV+full-T+(Q) Pure ab initio equilibrium structure: basis set convergence and higher excitations

EQUILIBRIUM STRUCTURE: pure ab initio structure vs semi-experimental geometry (dist: Å / ang: º) F-SiSi-H  HSiF CBS+CV+full-T+(Q) Semi-experimental [uncertainties: 3  ] (1)1.4698(2)108.29(2)

THANK YOU for your attention!! THANK YOU for your attention!!