February 2, 2004CS 2311 Karnaugh maps Last time we saw applications of Boolean logic to circuit design. – The basic Boolean operations are AND, OR and.

Slides:



Advertisements
Similar presentations
Techniques for Combinational Logic Optimization
Advertisements

Minimization of Circuits
Prof. Sin-Min Lee Department of Computer Science
Chapter 3 Simplification of Switching Functions. Karnaugh Maps (K-Map) A K-Map is a graphical representation of a logic function’s truth table.
Gate-level Minimization
Boolean Algebra and Combinational Logic
CS 151 Digital Systems Design Lecture 6 More Boolean Algebra A B.
Karnaugh Maps for Simplification
Computer Engineering (Logic Circuits) (Karnaugh Map)
Logic gate level Part 3: minimizing circuits. Improving circuit efficiency Efficiency of combinatorial circuit depends on number & arrangement of its.
Chapter 2: Combinatorial Logic Circuits Illustration Pg. 32 Logic Circuit Diagrams - Circuit Optimization -2,3,4 level maps 48 elements Optimized to 25.
IKI a-Simplification of Boolean Functions Bobby Nazief Semester-I The materials on these slides are adopted from those in CS231’s Lecture.
PHY 201 (Blum)1 Karnaugh Maps References: Chapters 4 and 5 in Digital Principles (Tokheim) Chapter 3 in Introduction to Digital Systems (Palmer and Perlman)
Overview Part 2 – Circuit Optimization 2-4 Two-Level Optimization
IKI a-Boolean Algebra Bobby Nazief Semester-I The materials on these slides are adopted from those in CS231’s Lecture Notes at UIUC,
Chapter 3.5 Logic Circuits. How does Boolean algebra relate to computer circuits? Data is stored and manipulated in a computer as a binary number. Individual.
1 Simplification of Boolean Functions:  An implementation of a Boolean Function requires the use of logic gates.  A smaller number of gates, with each.
Department of Computer Engineering
1 Digital Logic Design Week 5 Simplifying logic expressions.
Karnaugh Maps References:
Dr. Eng. Farag Elnagahy Office Phone: King ABDUL AZIZ University Faculty Of Computing and Information Technology CPCS 222.
Charles Kime & Thomas Kaminski © 2008 Pearson Education, Inc. Circuit Optimization Logic and Computer Design Fundamentals.
CS231 Boolean Algebra1 K-map Summary K-maps are an alternative to algebra for simplifying expressions. – The result is a minimal sum of products, which.
Chapter3: Gate-Level Minimization Part 1 Origionally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
CHAPTER 3: PRINCIPLES OF COMBINATIONAL LOGIC
Lecture 4 Nand, Nor Gates, CS147 Circuit Minimization and
CS1Q Computer Systems Lecture 7
Ahmad Almulhem, KFUPM 2010 COE 202: Digital Logic Design Combinational Logic Part 3 Dr. Ahmad Almulhem ahmadsm AT kfupm Phone: Office:
June 17, 2002Basic circuit analysis and design1 Example K-map simplification Let’s consider simplifying f(x,y,z) = xy + y’z + xz. First, you should convert.
June 11, 2002© Howard Huang1 Boolean algebra Last time we talked about Boolean functions, Boolean expressions, and truth tables. Today we’ll learn.
Karnaugh Maps (K-Maps)
June 10, 2002© Howard Huang1 Number systems To get started, we’ll discuss one of the fundamental concepts underlying digital computer design:
Computer Systems 1 Fundamentals of Computing Simplifying Boolean Expressions.
CS231 Boolean Algebra1 Summary so far So far: – A bunch of Boolean algebra trickery for simplifying expressions and circuits – The algebra guarantees us.
LOGIC CIRCUITLOGIC CIRCUIT. Goal To understand how digital a computer can work, at the lowest level. To understand what is possible and the limitations.
CS151 Introduction to Digital Design Chapter Map Simplification.
Chapter 3 Special Section Focus on Karnaugh Maps.
Boolean Functions and Boolean Algebra Laxmikant Kale.
Karnaugh Maps (K-Maps)
June 12, 2002© Howard Huang1 Karnaugh maps Last time we saw applications of Boolean logic to circuit design. – The basic Boolean operations are.
Karnaugh Maps (K-Map) A K-Map is a graphical representation of a logic function’s truth table.
CS231 Boolean Algebra1 The dual idea: products of sums Just to keep you on your toes... A product of sums (POS) expression contains: – Only AND (product)
Karnaugh Map (K-Map) By Dr. M. Khamis Mrs. Dua’a Al Sinari.
Digital Logic (Karnaugh Map). Karnaugh Maps Karnaugh maps (K-maps) are graphical representations of boolean functions. One map cell corresponds to a row.
Lecture 5 More Boolean Algebra A B. Overview °Expressing Boolean functions °Relationships between algebraic equations, symbols, and truth tables °Simplification.
Based on slides by:Charles Kime & Thomas Kaminski © 2004 Pearson Education, Inc. ECE/CS 352: Digital System Fundamentals Lecture 7 – Karnaugh Maps.
CS231 Boolean Algebra1 Circuit analysis summary After finding the circuit inputs and outputs, you can come up with either an expression or a truth table.
Mu.com.lec 9. Overview Gates, latches, memories and other logic components are used to design computer systems and their subsystems Good understanding.
CE1110: Digital Logic Design Gate Level Minimization Karnaugh Maps (K-Maps)
CHAPTER 3 Simplification of Boolean Functions
Lecture 4 Nand, Nor Gates, CS147 Circuit Minimization and
Computer Organisation
Prof. Sin-Min Lee Department of Computer Science
Dr. Clincy Professor of CS
Boolean Algebra and Combinational Logic
Circuit analysis summary
Boolean algebra Last time we talked about Boolean functions, Boolean expressions, and truth tables. Today we’ll learn how to how use Boolean algebra to.
Lecture 3 Gunjeet Kaur Dronacharya Group of Institutions
Karnaugh Maps.
Karnaugh Maps References: Lecture 4 from last semester
BASIC & COMBINATIONAL LOGIC CIRCUIT
Functions Computers take inputs and produce outputs, just like functions in math! Mathematical functions can be expressed in two ways: We can represent.
MINTERMS and MAXTERMS Week 3
Dr. Clincy Professor of CS
Dr. Clincy Professor of CS
From now on: Combinatorial Circuits:
Karnaugh maps Last time we saw applications of Boolean logic to circuit design. The basic Boolean operations are AND, OR and NOT. These operations can.
Basic circuit analysis and design
Circuit Simplification and
Presentation transcript:

February 2, 2004CS 2311 Karnaugh maps Last time we saw applications of Boolean logic to circuit design. – The basic Boolean operations are AND, OR and NOT. – These operations can be combined to form complex expressions, which can also be directly translated into a hardware circuit. – Boolean algebra helps us simplify expressions and circuits. Today we’ll look at a graphical technique for simplifying an expression into a minimal sum of products (MSP) form: – There are a minimal number of product terms in the expression. – Each term has a minimal number of literals. Circuit-wise, this leads to a minimal two-level implementation.

February 2, 2004CS 2312 Review: Standard forms of expressions We can write expressions in many ways, but some ways are more useful than others A sum of products (SOP) expression contains: – Only OR (sum) operations at the “outermost” level – Each term that is summed must be a product of literals The advantage is that any sum of products expression can be implemented using a two-level circuit – literals and their complements at the “0th” level – AND gates at the first level – a single OR gate at the second level This diagram uses some shorthands… – NOT gates are implicit – literals are reused – this is not okay in LogicWorks! f(x,y,z) = y’ + x’yz’ + xz

February 2, 2004CS 2313 Terminology: Minterms A minterm is a special product of literals, in which each input variable appears exactly once. A function with n variables has 2 n minterms (since each variable can appear complemented or not) A three-variable function, such as f(x,y,z), has 2 3 = 8 minterms: Each minterm is true for exactly one combination of inputs: x’y’z’x’y’zx’yz’x’yz xy’z’xy’zxyz’xyz MintermIs true when…Shorthand x’y’z’x=0, y=0, z=0m 0 x’y’zx=0, y=0, z=1m 1 x’yz’x=0, y=1, z=0m 2 x’yzx=0, y=1, z=1m 3 xy’z’x=1, y=0, z=0m 4 xy’zx=1, y=0, z=1m 5 xyz’x=1, y=1, z=0m 6 xyzx=1, y=1, z=1m 7

February 2, 2004CS 2314 Terminology: Sum of minterms form Every function can be written as a sum of minterms, which is a special kind of sum of products form The sum of minterms form for any function is unique If you have a truth table for a function, you can write a sum of minterms expression just by picking out the rows of the table where the function output is 1. f = x’y’z’ + x’y’z + x’yz’ + x’yz + xyz’ = m 0 + m 1 + m 2 + m 3 + m 6 =  m(0,1,2,3,6) f’ = xy’z’ + xy’z + xyz = m 4 + m 5 + m 7 =  m(4,5,7) f’ contains all the minterms not in f

February 2, 2004CS 2315 Re-arranging the truth table A two-variable function has four possible minterms. We can re-arrange these minterms into a Karnaugh map. Now we can easily see which minterms contain common literals. – Minterms on the left and right sides contain y’ and y respectively. – Minterms in the top and bottom rows contain x’ and x respectively.

February 2, 2004CS 2316 Karnaugh map simplifications Imagine a two-variable sum of minterms: x’y’ + x’y Both of these minterms appear in the top row of a Karnaugh map, which means that they both contain the literal x’. What happens if you simplify this expression using Boolean algebra? x’y’ + x’y= x’(y’ + y)[ Distributive ] = x’  1[ y + y’ = 1 ] = x’[ x  1 = x ]

February 2, 2004CS 2317 More two-variable examples Another example expression is x’y + xy. – Both minterms appear in the right side, where y is uncomplemented. – Thus, we can reduce x’y + xy to just y. How about x’y’ + x’y + xy? – We have x’y’ + x’y in the top row, corresponding to x’. – There’s also x’y + xy in the right side, corresponding to y. – This whole expression can be reduced to x’ + y.

February 2, 2004CS 2318 A three-variable Karnaugh map For a three-variable expression with inputs x, y, z, the arrangement of minterms is more tricky: Another way to label the K-map (use whichever you like):

February 2, 2004CS 2319 Why the funny ordering? With this ordering, any group of 2, 4 or 8 adjacent squares on the map contains common literals that can be factored out. “Adjacency” includes wrapping around the left and right sides: We’ll use this property of adjacent squares to do our simplifications. x’y’z + x’yz =x’z(y’ + y) =x’z  1 =x’z x’y’z’ + xy’z’ + x’yz’ + xyz’ =z’(x’y’ + xy’ + x’y + xy) =z’(y’(x’ + x) + y(x’ + x)) =z’(y’+y) =z’

February 2, 2004CS Example K-map simplification Let’s consider simplifying f(x,y,z) = xy + y’z + xz. First, you should convert the expression into a sum of minterms form, if it’s not already. – The easiest way to do this is to make a truth table for the function, and then read off the minterms. – You can either write out the literals or use the minterm shorthand. Here is the truth table and sum of minterms for our example: f(x,y,z)= x’y’z+ xy’z+ xyz’+ xyz = m 1 +m 5 +m 6 +m 7

February 2, 2004CS Unsimplifying expressions You can also convert the expression to a sum of minterms with Boolean algebra. – Apply the distributive law in reverse to add in missing variables. – Very few people actually do this, but it’s occasionally useful. In both cases, we’re actually “unsimplifying” our example expression. – The resulting expression is larger than the original one! – But having all the individual minterms makes it easy to combine them together with the K-map. xy + y’z + xz = (xy  1) + (y’z  1) + (xz  1) = (xy  (z’ + z)) + (y’z  (x’ + x)) + (xz  (y’ + y)) = (xyz’ + xyz) + (x’y’z + xy’z) + (xy’z + xyz) = xyz’ + xyz + x’y’z + xy’z

February 2, 2004CS Making the example K-map Next up is drawing and filling in the K-map. – Put 1s in the map for each minterm, and 0s in the other squares. – You can use either the minterm products or the shorthand to show you where the 1s and 0s belong. In our example, we can write f(x,y,z) in two equivalent ways. In either case, the resulting K-map is shown below. f(x,y,z) = x’y’z + xy’z + xyz’ + xyzf(x,y,z) = m 1 + m 5 + m 6 + m 7

February 2, 2004CS K-maps from truth tables You can also fill in the K-map directly from a truth table. – The output in row i of the table goes into square m i of the K-map. – Remember that the rightmost columns of the K-map are “switched.”

February 2, 2004CS Grouping the minterms together The most difficult step is grouping together all the 1s in the K-map. – Make rectangles around groups of one, two, four or eight 1s. – All of the 1s in the map should be included in at least one rectangle. – Do not include any of the 0s. Each group corresponds to one product term. For the simplest result: – Make as few rectangles as possible, to minimize the number of products in the final expression. – Make each rectangle as large as possible, to minimize the number of literals in each term. – It’s all right for rectangles to overlap, if that makes them larger.

February 2, 2004CS Reading the MSP from the K-map Finally, you can find the MSP. – Each rectangle corresponds to one product term. – The product is determined by finding the common literals in that rectangle. For our example, we find that xy + y’z + xz = y’z + xy. (This is one of the additional algebraic laws from last time.)

February 2, 2004CS Practice K-map 1 Simplify the sum of minterms m 1 + m 3 + m 5 + m 6.

February 2, 2004CS Solutions for practice K-map 1 Here is the filled in K-map, with all groups shown. – The magenta and green groups overlap, which makes each of them as large as possible. – Minterm m 6 is in a group all by its lonesome. The final MSP here is x’z + y’z + xyz’.

February 2, 2004CS Four-variable K-maps We can do four-variable expressions too! – The minterms in the third and fourth columns, and in the third and fourth rows, are switched around. – Again, this ensures that adjacent squares have common literals. Grouping minterms is similar to the three-variable case, but: – You can have rectangular groups of 1, 2, 4, 8 or 16 minterms. – You can wrap around all four sides.

February 2, 2004CS Example: Simplify m 0 +m 2 +m 5 +m 8 +m 10 +m 13 The expression is already a sum of minterms, so here’s the K-map: We can make the following groups, resulting in the MSP x’z’ + xy’z.

February 2, 2004CS K-maps can be tricky! There may not necessarily be a unique MSP. The K-map below yields two valid and equivalent MSPs, because there are two possible ways to include minterm m 7. Remember that overlapping groups is possible, as shown above. y’z + yz’ + xyy’z + yz’ + xz