Atmospheric Mercury Model Intercomparisons Presentation at Collaborative Meeting on Modeling Mercury in Freshwater Environments Niagara Falls, NY, January.

Slides:



Advertisements
Similar presentations
1 Source-attribution for atmospheric mercury deposition: Where does the mercury in mercury deposition come from? Dr. Mark Cohen NOAA Air Resources Laboratory.
Advertisements

Mercury - overview of global emissions, transport and effects John Munthe IVL Swedish Environmental Research Institute.
Shannon Capps April 22, Mercury cycling From
Title EMEP Unified model Importance of observations for model evaluation Svetlana Tsyro MSC-W / EMEP TFMM workshop, Lillestrøm, 19 October 2010.
Christian Seigneur AER San Ramon, CA
The Atmospheric Transport and Deposition of Mercury Dr. Mark Cohen NOAA Air Resources Laboratory Silver Spring, Maryland Materials assembled for a discussion.
Building a Global Modeling Capability for Mercury with GEOS-CHEM Noelle Eckley Selin, Rokjin J. Park, Daniel J. Jacob Constraining the global budget of.
Building a Global Modeling Capability for Mercury with GEOS-CHEM Noelle Eckley Selin GEOS-CHEM meeting 6 April 2005.
Atmospheric modelling activities inside the Danish AMAP program Jesper H. Christensen NERI-ATMI, Frederiksborgvej Roskilde.
Global Transport of Mercury (Hg) Compounds Noelle Eckley EPS Second Year Symposium September 2003 Photo: AMAP & Geological Museum, Copenhagen.
Building a Global Modeling Capability for Mercury with GEOS-CHEM Noelle Eckley Selin, Rokjin J. Park, Daniel J. Jacob Constraining the global budget of.
Mercury Source Attribution at Global, Regional and Local Scales Christian Seigneur, Krish Vijayaraghavan, Kristen Lohman, and Prakash Karamchandani AER.
Atmospheric Mercury: Emissions, Transport/Fate, Source-Receptor Relationships Presentation at Collaborative Meeting on Modeling Mercury in Freshwater Environments.
NOAA Report to Congress: Mercury Contamination in the Great Lakes Briefing for Rep. Mark Kirk (R-IL) 4 PM, Tuesday June 12, 2007, Room 1030, Longworth.
Modeling the Atmospheric Transport and Deposition of Mercury Materials assembled for “Mercury in Maryland” Meeting, Appalachian Lab, Univ. of Maryland.
Mercury in the Great Lakes Region Sponsored by the Commission for Environmental Cooperation’s Environment, Economy and Trade and Pollutants and Health.
Atmospheric Mercury Simulation with CMAQ Version Russ Bullock - NOAA Air Resources Laboratory* Kathy Brehme - Computer Sciences Corp. 5 th Annual.
Atmospheric Mercury Deposition to the Great Lakes A Multi-Year Study Supported by the Great Lakes Restoration Initiative Principal Investigator: Dr. Mark.
(work funded through the Great Lakes Restoration Initiative)
Challenges in Global Mercury Modeling Ashu Dastoor Meteorological Service of Canada Environment Canada Acknowledgements: Didier Davignon and Arturo Quintanar.
Modeling the Atmospheric Transport and Deposition of Mercury to the Great Lakes Mark Cohen, Roland Draxler, Hang Lei, Richard Artz NOAA Air Resources Laboratory.
TFMM & TFEIP Workshop, Dublin, 2007 Uncertainties of heavy metal pollution assessment Oleg Travnikov EMEP/MSC-E.
Alexey Gusev, Victor Shatalov, Olga Rozovskaya
Organization of Course INTRODUCTION 1.Course overview 2.Air Toxics overview 3.HYSPLIT overview HYSPLIT Theory and Practice 4.Meteorology 5.Back Trajectories.
Trans-Pacific Chemical Transport of Mercury: Sensitivity Analysis on Asian Emission Contribution to Mercury Deposition in North America Using CMAQ-Hg C.-J.
Organization of Course INTRODUCTION 1.Course overview 2.Air Toxics overview 3.HYSPLIT overview HYSPLIT Theory and Practice 4.Meteorology 5.Back Trajectories.
O. Russell Bullock, Jr. National Oceanic and Atmospheric Administration (NOAA) Atmospheric Sciences Modeling Division (in partnership with the U.S. Environmental.
Importance of Lightning NO for Regional Air Quality Modeling Thomas E. Pierce/NOAA Atmospheric Modeling Division National Exposure Research Laboratory.
Implementation of the Particle & Precursor Tagging Methodology (PPTM) for the CMAQ Modeling System: Mercury Tagging 5 th Annual CMAS Conference Research.
Global Modeling of Mercury in the Atmosphere using the GEOS-CHEM model Noelle Eckley, Rokjin Park, Daniel Jacob 30 January 2004.
Atmospheric Mercury Modeling at the NOAA Air Resources Laboratory using the HYSPLIT-Hg Model Presentation at the Gulf Coast Mercury Research Collaboration.
EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Summary presented by Mark Cohen, NOAA Air Resources Laboratory,
Modeling the Atmospheric Deposition of Mercury to Lake Champlain (from Anthropogenic Sources in the U.S. and Canada) Dr. Mark Cohen NOAA Air Resources.
4. Atmospheric chemical transport models 4.1 Introduction 4.2 Box model 4.3 Three dimensional atmospheric chemical transport model.
Sensitivity Evaluation of Gas-phase Reduction Mechanisms of Divalent Mercury Using CMAQ-Hg in a Contiguous US Domain Pruek Pongprueksa a, Che-Jen Lin a,
Numerical Simulation of Atmospheric Loadings of Mercury from a Coal Fired Power Plant to Lake Erie S. M. Daggupaty, C. M. Banic and P. Blanchard Air Quality.
Application of the CMAQ Particle and Precursor Tagging Methodology (PPTM) to Support Water Quality Planning for the Virginia Mercury Study 6 th Annual.
Trend analysis of HMs and POPs on the basis of measurements and modelling data Victor Shatalov and Oleg Travnikov, MSC-E.
1 Modeling the Atmospheric Transport and Deposition of Mercury Dr. Mark Cohen NOAA Air Resources Laboratory Silver Spring, Maryland Mercury Workshop, Great.
© Crown copyright Met Office Estimating UK and NW European CH 4 emissions using inversion modelling Alistair Manning with thanks to Simon O’Doherty & Dickon.
Progress of HM & POP modelling from global to country scale Ilya Ilyin, Oleg Travnikov, Victor Shatalov, Alexey Gusev Meteorological Synthesizing Centre.
Evaluation of pollution levels of lead and PCB-153 over Central Asian (CA) countries within CAPACT project (preliminary results) Ilia Ilyin, EMEP/MSC-E.
Joint EMEP/WGE meeting, Geneva, 2015 Heavy metal pollution assessment within EMEP Oleg Travnikov on behalf of MSC-E and CCC.
Evaluation of concentrations of air pollutants and depositions of HMs over the EECCA and SEE regions Ilia Ilyin, EMEP/MSC-E EMEP/MSC-E TFHM, May 14-16,
Using HYSPLIT to Understand Source-Receptor Relationships: Some Examples HYSPLIT Training NOAA Air Resources Laboratory Jun 2-4, 2009 Silver Spring, MD,
Dr. Mark Cohen NOAA Air Resources Laboratory Silver Spring, Maryland
The Atmospheric Transport and Deposition of Mercury to the Great Lakes Dr. Mark Cohen NOAA Air Resources Laboratory Silver Spring, Maryland Collection.
Georgia Institute of Technology SUPPORTING INTEX THROUGH INTEGRATED ANALYSIS OF SATELLITE AND SUB-ORBITAL MEASUREMENTS WITH GLOBAL AND REGIONAL 3-D MODELS:
Organization of Course INTRODUCTION 1.Course overview 2.Air Toxics overview 3.HYSPLIT overview HYSPLIT Theory and Practice 4.Meteorology 5.Back Trajectories.
Simulating the Atmospheric Fate and Transport of Mercury using the NOAA HYSPLIT Model Presentation at the NOAA Atmospheric Mercury Meeting November 14-15,
W. T. Hutzell 1, G. Pouliot 2, and D. J. Luecken 1 1 Atmospheric Modeling Division, U. S. Environmental Protection Agency 2 Atmospheric Sciences Modeling.
Source-apportionment for atmospheric mercury deposition: Where does the mercury in mercury deposition come from? Mark Cohen, Roland Draxler, and Richard.
EMEP WGSR, EMEP Progress on HMs, 2006  Review and evaluation of the MSCE-HM model (TFMM)  Atmospheric pollution in 2004 (emissions, monitoring.
29 th TF meeting of the ICP-Vegetation, March, 2016, Dubna, Russia ANALYSIS OF LONG-TERM TRENDS OF ATMOSPHERIC HEAVY METAL POLLUTION IN THE EMEP COUNTRIES.
TF HTAP Workshop, Potsdam, 2016 GMOS: Multi-model assessment of mercury pollution and processes Environment Canada Oleg Travnikov, Johannes Bieser, Ashu.
17 th TFMM Meeting, May, 2016 EMEP Case study: Assessment of HM pollution levels with fine spatial resolution in Belarus, Poland and UK Ilia Ilyin,
The application of Models-3 in national policy Samantha Baker Air and Environment Quality Division, Defra.
NOAA’s Atmospheric Mercury Monitoring in the Gulf of Mexico Region January 17,
CONSTRAINTS FROM RGM MEASUREMENTS ON GLOBAL MERCURY CHEMISTRY Noelle Eckley Selin 1 Daniel J. Jacob 1, Rokjin J. Park 1, Robert M. Yantosca 1, Sarah Strode,
Development of a Multipollutant Version of the Community Multiscale Air Quality (CMAQ) Modeling System Shawn Roselle, Deborah Luecken, William Hutzell,
Building a Global Modeling Capability for Mercury with GEOS-CHEM
Model assessment of heavy metal pollution from global to local scales
Heavy metal pollution assessment within EMEP
John Munthe and Ingvar Wängberg
Status of development of the MSC-E Hemispheric/global model
Uncertainties of heavy metal pollution assessment
Future activities in POP modelling
Model assessment of HM and POP pollution of the EECCA region
Comparison of model results with measurements
Atmospheric modelling of HMs Sensitivity study
Presentation transcript:

Atmospheric Mercury Model Intercomparisons Presentation at Collaborative Meeting on Modeling Mercury in Freshwater Environments Niagara Falls, NY, January 19-20, 2006 Dr. Mark Cohen NOAA Air Resources Laboratory 1315 East West Highway, R/ARL, Room 3316 Silver Spring, Maryland,

2.Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) Atmospheric Mercury Model Intercomparisons 3.Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg 4.Summary 2 1.EMEP Mercury Model Intercomparison

2.Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) Atmospheric Mercury Model Intercomparisons 3.Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg 4.Summary 3 1.EMEP Mercury Model Intercomparison

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 4 Participants D. Syrakov ……………………………..Bulgaria….NIMH A. Dastoor, D. Davignon ………………Canada......MSC-Can J. Christensen …………………………. Denmark…NERI G. Petersen, R. Ebinghaus …………......Germany…GKSS J. Pacyna ………………………………. Norway…..NILU J. Munthe, I. Wängberg ……………….. Sweden…..IVL R. Bullock ………………………………USA………EPA M. Cohen, R. Artz, R. Draxler …………USA………NOAA C. Seigneur, K. Lohman ………………..USA……...AER/EPRI A. Ryaboshapko, I. Ilyin, O.Travnikov…EMEP……MSC-E

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 5 Intercomparison Conducted in 3 Stages I.Comparison of chemical schemes for a cloud environment II.Air Concentrations in Short Term Episodes III.Long-Term Deposition and Source-Receptor Budgets

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 6 Model AcronymModel Name and InstitutionStage IIIIII CAMChemistry of Atmos. Mercury model, Environmental Institute, Sweden MCMMercury Chemistry Model, Atmos. & Environmental Research, USA CMAQCommunity Multi-Scale Air Quality model, US EPA ADOMAcid Deposition and Oxidants Model, GKSS Research Center, Germany MSCE-HMMSC-E heavy metal regional model, EMEP MSC-E GRAHMGlobal/Regional Atmospheric Heavy Metal model, Environment Canada EMAPEulerian Model for Air Pollution, Bulgarian Meteo-service DEHMDanish Eulerian Hemispheric Model, National Environmental Institute HYSPLITHybrid Single Particle Lagrangian Integrated Trajectory model, US NOAA MSCE-HM-HemMSC-E heavy metal hemispheric model, EMEP MSC-E Participating Models

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 7 Intercomparison Conducted in 3 Stages I.Comparison of chemical schemes for a cloud environment II.Air Concentrations in Short Term Episodes III.Long-Term Deposition and Source-Receptor Budgets

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 8 Hg(II), Reactive Gaseous Mercury [RGM] Elemental Mercury [Hg(0)] Particulate Mercury [Hg(p)] Atmospheric Mercury Re-emission of previously deposited mercury Primary Anthropogenic Emissions Natural emissions Wet and Dry Deposition CLOUD DROPLET cloud Hg(II) reduced to Hg(0) by SO 2 and sunlight Hg(0) oxidized to dissolved Hg(II) species by O 3, OH, HOCl, OCl - Adsorption/ desorption of Hg(II) to /from soot Hg(p) Vapor phase Hg(0) oxidized to RGM and Hg(p) by O 3, H 2 0 2, Cl 2, OH, HCl Hg(p) Dissolution?

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 9 Variation of Hg concentrations (ng/L)

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 10 Stage I Publications: 2001Ryaboshapko, A., Ilyin, I., Bullock, R., Ebinghaus, R., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage I. Comparisons of Chemical Modules for Mercury Transformations in a Cloud/Fog Environment. Meteorological Synthesizing Centre – East, Moscow, Russia. 2002Ryaboshapko, A., Bullock, R., Ebinghaus, R., Ilyin, I., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., Wangberg, I. Comparison of Mercury Chemistry Models. Atmospheric Environment 36,

11 EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 11 Intercomparison Conducted in 3 Stages I.Comparison of chemical schemes for a cloud environment II.Air Concentrations in Short Term Episodes III.Long-Term Deposition and Source-Receptor Budgets

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 12 ModelCMAQ-HgADOMHYSPLITEMAPGRAHMDEHMMSCE-Hg Model typeEulerian LagrangianEulerian Scale/ Domain regional/ Central and Northern Europe regional/ Central Europe regional/ EMEP regional/ EMEP globalHemispheric regional/ EMEP Source of meteorological data ECMWF TOGA reanalysis (MM5) HIRLAM NCEP/NCAR (MM-5) SDA, NCEP/NCAR reanalysis Canadian Meteorolo- gical Centre NCEP / NCAR reanalysis SDA, NCEP/NCAR reanalysis Model top height (km) Horizontal resolution (km, unless noted differently) 36 x 3655 x x 36, 108 x x 501 o x 1 o 50 x x x 50 Hg(0) boundary condition (ng/m 3 ) No RGM boundary condition (pg/m 3 ) none00 TPM boundary condition (pg/m 3 ) none020 Gas-phase oxidation agents O 3, H 2 O 2, Cl 2, OH · O3O3 O 3, H 2 O 2, Cl 2, HCl O 3, OH ! O3O3 O3O3 O 3 (f) Liquid-phase oxidation agents O 3, OH !, HOCl, OCl - O3O3 O3O3 O3O3 O3O3 O3O3 Liquid-phase reduction agents SO 3 =, hv, HO 2 SO 3 = SO 3 =, HO 2 SO 3 = SO 3 =, HO 2

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 13 Anthropogenic Mercury Emissions Inventory and Monitoring Sites for Phase II (note: only showing largest emitting grid cells) Mace Head, Ireland grassland shore Rorvik, Sweden forested shore Aspvreten, Sweden forested shore Zingst, Germany sandy shore Neuglobsow, Germany forested area

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 14 Neuglobsow Zingst Aspvreten Rorvik Mace Head

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 15 Total Gaseous Mercury at Neuglobsow: June 26 – July 6, 1995 NW N N S SE NW Neuglobsow

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 16 Total Gaseous Mercury (ng/m 3 ) at Neuglobsow: June 26 – July 6, 1995

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 17 Total Gaseous Mercury (ng/m 3 ) at Neuglobsow: June 26 – July 6, 1995 Using default emissions inventory The emissions inventory is a critical input to the models… Using alternative emissions inventory

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 18 Total Particulate Mercury (pg/m 3 ) at Neuglobsow, Nov 1-14, 1999

19 EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury BudgetsDry DepWet DepRGMHg(p)Hg 0 Chemistry Conclu- sions Stage IIIStage IIStage IIntro- duction Reactive Gaseous Mercury at Neuglobsow, Nov 1-14, 1999

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury BudgetsDry DepWet DepRGMHg(p)Hg 0 Chemistry Conclu- sions Stage IIIStage IIStage IIntro- duction 20 Overall Phase II statistics for 2-week episode means Deviation Factor TGM: 2-week mean concentrations within factor of 1.35 TPM: 90% within factor of 2.5 RGM:90% within a factor of 10; 50% within a factor of 2 RGM: 90% within a factor of 10 RGM: 50% within a factor of 2 TPM: 90% within a factor of 2.5 TGM: all within a factor of 1.35

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 21 Stage II Publications: 2003Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Davignon, D., Draxler, R., Ebinghaus, R., Ilyin, I., Munthe, J., Petersen, G., Syrakov, D. Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage II. Comparisons of Modeling Results with Observations Obtained During Short Term Measuring Campaigns. Meteorological Synthesizing Centre – East, Moscow, Russia. 2005Ryaboshapko, A., Bullock, R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R., Davignon, D., Draxler, R., and Munthe, J. Intercomparison Study of Atmospheric Mercury Models. Phase II. Comparison of Models with Short-Term Measurements. Submitted to Atmospheric Environment.

22 EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 22 Intercomparison Conducted in 3 Stages I.Comparison of chemical schemes for a cloud environment II.Air Concentrations in Short Term Episodes III.Long-Term Deposition and Source-Receptor Budgets

23 EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 23 Phase III Sampling Locations

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 24 Due to resource constraints, not all models simulated the entire year 1999… JanFebMarAprMayJunJulAugSepOctNovDec CMAQ HYSPLIT ADOM MSCE-HM MSCE-HEM DEHM EMAP

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 25

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 26 Wet Deposition Summary ~60% within a factor of 2 ~80% within a factor of 3 ~90% within a factor of 5 ~100% within a factor of 10

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 27  For dry deposition, there are no measurement results to compare the models against;  However, the models can be compared against each other…

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 28

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 29 Main items of mercury atmospheric balance for the UK in 1999, t/yr

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 30 Items of Hg atmospheric balances for the countries in 1999, t/yr [average modeled result (with ranges in parentheses)] ItemThe UKItalyPoland Total deposition 3.5 ( ) 4.7 ( ) 11.8 ( ) Dep. from own emissions 1.3 ( ) 1.3 ( ) 7.4 ( ) Dep. from European emissions 0.3 ( ) 0.8 ( ) 2.1 ( ) Outflow 7.3 ( ) 8.4 ( ) 18.2 (16–21)

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 31 Stage III Publication: 2005Ryaboshapko, A., Artz, R., Bullock, R., Christensen, J., Cohen, M., Draxler, R., Ilyin, I., Munthe, J., Pacyna, J., Petersen, G., Syrakov, D., Travnikov, O. Intercomparison Study of Numerical Models for Long Range Atmospheric Transport of Mercury. Stage III. Comparison of Modelling Results with Long-Term Observations and Comparison of Calculated Items of Regional Balances. Meteorological Synthesizing Centre – East, Moscow, Russia.

2.Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) Atmospheric Mercury Model Intercomparisons 3.Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg 4.Summary 32 1.EMEP Mercury Model Intercomparison

Calculated from data used to produce Appendix A of USEPA (2005): Clean Air Mercury Rule (CAMR) Technical Support Document: Methodology Used to Generate Deposition, Fish Tissue Methylmercury Concentrations, and Exposure for Determining Effectiveness of Utility Emissions Controls: Analysis of Mercury from Electricity Generating Units 33

HYSPLIT 1996 ISC: Different Time Periods and Locations, but Similar Results 34

2.Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) Atmospheric Mercury Model Intercomparisons 3.Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg 4.Summary 35 1.EMEP Mercury Model Intercomparison

HYSPLIT-Hg results for Lake Erie (1999)

37 HYSPLIT-Hg results for Lake Erie (1999)

Modeled Mercury Deposition in the Great Lakes Region from all sources during 2001 Modeled Mercury Deposition in the Great Lakes Region attributable to U.S. coal-fired power plants during 2001 CMAQ-Hg results from EPA analysis performed for the Clean Air Mercury Rule

Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-HG (2001 meteorology, 2001 emissions). 39

 Model-estimated U.S. utility atmospheric mercury deposition contribution to the Great Lakes: HYSPLIT-Hg (1996 meteorology, 1999 emissions) vs. CMAQ-Hg (2001 meteorology, 2001 emissions).  This figure also shows an added component of the CMAQ-Hg estimates -- corresponding to 30% of the CMAQ-Hg results – in an attempt to adjust the CMAQ-Hg results to account for the deposition underprediction found in the CMAQ-Hg model evaluation. 40

2.Local Deposition Comparison: HYSPLIT-Hg vs. ISC (Gaussian Plume) Atmospheric Mercury Model Intercomparisons 3.Comparison of Utility Contributions to the Great Lakes: HYSPLIT-Hg vs. CMAQ-Hg 4.Summary 41 1.EMEP Mercury Model Intercomparison

Summary of Model Intercomparisons  Extremely useful for improving models  Opportunity to work together and pool resources (e.g., everyone doesn’t have to create their own inventory or assemble monitoring data for evaluation)  Funding is a problem… most studies do not fund the individual participants….  10% of the work is doing the initial modeling analysis;  90% of the work is trying to figure out why the models are different – but we rarely have the resources to do much of this

Thanks!

Extra Slides

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 45 Effect of Different Assumptions Regarding Hg(p) Solubility AER/EPRI 0%; MSCE-EMEP 50%; CMAQ-EPA 100%

2000 European anthropogenic Hg emissions 240 t/yr EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets European anthropogenic Hg re-emissions 50 t/yr European natural Hg emissions 180 t/yr

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets global natural Hg emissions 1800 t/yr 1995 global anthropogenic Hg emissions 1900 t/yr

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 48 There are uncertainties in measurements -- even of precipitation amount…

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 49

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 50

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 51

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 52

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 53  In the following, the total model- predicted deposition (= wet + dry) is compared

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 54 Total Modeled Hg Deposition (wet + dry)

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 55 Total Modeled Hg Deposition (wet + dry) Note: ADOM was not run for August, so for this graph, ADOM results for July were used

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 56 Total Modeled Hg Deposition (wet + dry)

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 57 Range Deposition over polluted area in Feb 1999, g/km 2 Total deposition over the countries in Feb 1999, kg WetDryThe UKItalyPoland Minimum MSCE-HM MSCE-HM- Hem Maximum EMEP model results in relation to the other models

EMEP Intercomparison Study of Numerical Models for Long-Range Atmospheric Transport of Mercury Intro- duction Stage IStage IIStage IIIConclu- sions ChemistryHg 0 Hg(p)RGMWet DepDry DepBudgets 58 Conclusions: Uncertainties in Mercury Modeling Elemental Hg in air- factor of 1.2 Particulate Hg in air- factor of 1.5 Oxidized gaseous Hg in air- factor of 5 Total Hg in precipitation - factor of 1.5 Wet deposition- factor of 2.0 Dry deposition- factor of 2.5 Balances for countries- factor of 2