Omniran-14-0038-00-CF00 1 OmniRAN R3 Considerations Date: 2014-03-17 Authors: NameAffiliationPhone Max RiegelNSN+49 173 293

Slides:



Advertisements
Similar presentations
Omniran Wi-Fi Hotspot Roaming Use Case Date: Authors: NameAffiliationPhone Max RiegelNSN
Advertisements

(omniran TG) Short introduction into OmniRAN P802.1CF Date: Authors: NameAffiliationPhone Max RiegelNokia.
Omniran Network Detection and Selection Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran ecsg 1 OmniRAN EC SG July 2013 Liaison Report Chair: Max Riegel, NSN.
Omniran TG 1 Cooperation for OmniRAN P802.1CF Max Riegel, NSN (Chair OmniRAN TG)
Omniran GPP Trusted WLAN Access to EPC Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran IEEE 802 Enhanced Network Detection and Selection Date: Authors: NameAffiliationPhone Max RiegelNSN
OmniRAN Smart Grid use case Document Number: Omniran Date Submitted: Source: Max Riegel Nokia.
Omniran OmniRAN Wi-Fi Hotspot Roaming Use Case Date: Authors: NameAffiliationPhone Max RiegelNSN
SDN-based OmniRAN Use Cases Date: [ ] Authors: NameAffiliationPhone Antonio de la OlivaUC3M+34 Juan Carlos ZúñigaInterDigital+1.
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
OmniRAN ecsg SDN-based Control Plane and Data Plane Separation in OmniRAN Network Reference Model Date: Authors: NameAffiliationPhone .
Omniran ZigBee SEP2 Smart Grid Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran OmniRAN Wi-Fi Hotspot Roaming Use Case Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran PtP Links across IEEE 802 Bridged Infrastructure Date: Authors: NameAffiliationPhone Max
Omniran ZigBee SEP2 Smart Grid Use Case Analysis Date: Authors: NameAffiliationPhone Max RiegelNSN
OmniRAN-15-00xx WLAN as a Component (WaaC) Date: xx Authors: NameAffiliationPhone Yonggang FangZTETX Bo SunZTE He HuangZTE Notice:
OmniRAN Specification – Structuring the effort Document Number: Omniran Date Submitted: Source: Max Riegel
Omniran CF00 1 P802.1CF NRM Discussions Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
Discussion on NRM Control Reference Points Information and Parameters Date: Authors: NameAffiliationPhone Antonio de la Oliva University.
OmniRAN SDN-based OmniRAN Use Cases Summary Date: Authors: NameAffiliationPhone Antonio de la OlivaUC3M+34
An SDN-based approach for OmniRAN Reference Point mapping Date: [ ] Authors: NameAffiliationPhone Antonio de la
Omniran CF00 1 P802.1CF NRM Mapping to real networks Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran CF CF Network Reference Model Introduction Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
Omniran Thoughts about the tenets in IEEE 802.1CF Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 Some Detailed Information for Network Reference Model Date: [ ] Authors: NameAffiliationPhone Su YiFujitsu R&D.
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 VLANs in relation to P802.1CF NRM Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran IEEE 802 OmniRAN EC SG Results and Outlook Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 CF ToC Refinements Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 Content and outline considerations for Annex: Applicability to non-IEEE 802 PHY layer technologies Date: Authors:
OmniRAN IEEE 802 OmniRAN Recommended Practice ToC Proposal Date: Authors: NameAffiliationPhone Yonggang
Omniran CF00 1 Key Concepts of Authentication and Trust Establishment Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
Omniran CF00 1 Key Concepts of Network Selection and Detection Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
Omniran CF00 1 IEEE OmniRAN TG Athens NRM Conclusions Max Riegel, Nokia Networks (OmniRAN TG Chair)
OmniRAN CF00 1 IEEE 802 omniRAN Network Reference Model Amendment Date: Authors: NameAffiliationPhone Yonggang
Omniran OmniRAN SaMOG Use Case Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 P802.1CF NRM Backhaul Considerations Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
Omniran CF00 1 Key Concepts of Network Selection and Detection Date: Authors: NameAffiliationPhone Max RiegelNokia Networks+49.
OmniRAN IEEE 802 OmniRAN Architecture Proposal Date: Authors: NameAffiliationPhone Yonggang Bo.
Submission doc.: IEEE arc March 2014 Max Riegel (NSN)Slide 1 Cross-WG cooperation on OmniRAN P802.1CF E.g.: Network Discovery and Selection.
Omniran IEEE 802 Scope of OmniRAN Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran TG 1 Cooperations for OmniRAN P802.1CF Max Riegel, NSN (Chair OmniRAN TG)
Omniran CF00 1 Key Concepts of Association and Disassociation Date: Authors: NameAffiliationPhone Max RiegelNokia
OmniRAN omniRAN Network Function Virtualization Date: Authors: NameAffiliationPhone Yonggang FangZTETX Zhendong.
Omniran Backhaul representation in OmniRAN SDN model Date: Authors: NameAffiliationPhone Max RiegelNSN
Omniran CF00 1 P802.1CF NRM Ambiguities Date: Authors: NameAffiliationPhone Max RiegelNokia Networks
IEEE 802 OmniRAN Study Group: SDN Use Case
P802.1CF NRM Mapping to real networks
P802.1CF architectural considerations for EM and NM
P802.1CF NRM Refinements Abstract
P802.1CF NRM Discussions Abstract
802.1CF-D1.0 WG ballot comment remedies
P802.1CF D1.0 Figure Proposals Abstract
Network instantiation
Brief Introduction to OmniRAN P802.1CF
P802.1CF architectural considerations for EM and NM
Terminology clean-up User/Subscriber
Terminology clean-up User/Subscriber
P802.1CF operational models
P802.1CF D1.0 Figure Proposals Abstract
P802.1CF NRM Refinements Abstract
IEEE 802 Scope of OmniRAN Abstract
P802.1CF NRM Refinements Abstract
An SDN-based approach for OmniRAN Reference Point mapping
802.1CF ToC Refinements Abstract
OmniRAN SDN Use Case ToC
SDN-based OmniRAN Use Cases Summary
OmniRAN SDN Use Case ToC
Presentation transcript:

omniran CF00 1 OmniRAN R3 Considerations Date: Authors: NameAffiliationPhone Max RiegelNSN Notice: This document does not represent the agreed view of the OmniRAN EC SG. It represents only the views of the participants listed in the ‘Authors:’ field above. It is offered as a basis for discussion. It is not binding on the contributor, who reserve the right to add, amend or withdraw material contained herein. Copyright policy: The contributor is familiar with the IEEE-SA Copyright Policy. Patent policy: The contributor is familiar with the IEEE-SA Patent Policy and Procedures: and. Abstract The presentation provides further thoughts about R3 of the tentative Network Reference Model of the P802.1CF specification. Evidence to split up the user plane and control interface is provided by the initial results for the Network Discovery and Selection section.

omniran CF00 2 OmniRAN R3 Considerations Max Riegel (NSN)

omniran CF00 3 Reference Model for IEEE 802 Network with Reference Points Access Ctrl Internet R1 R3 R4 Access Ctrl Internet R3 R5 Terminal R3 Authentication Authorization Accounting Location CoA Mobility Encapsulation Authentication Authorization Accounting Location CoA Mobility Encapsulation Datapath AccessCore Transport Reference Points represent a bundle of functions between peer entities -Comprising control functions as well as the data path Functions are extensible but based on IEEE 802 specific attributes R2 Access R3

omniran CF00 4 Scope of IEEE 802 Access Network Medium Control and Data of R3 may go different pathes P802.1CF will define an abstraction of an access network based on IEEE 802 technologies –The access network provides the link between a station (IP host) and the first hop router The abstraction leads to very few generic interfaces for all kind of implementations –R1 represents the PHY and MAC layer functions between terminal and base station, which are completely covered by the IEEE 802 specifications –R2 represents a control interface between terminal and central control entity, e.g. for authentication –R3 represents a control interface between the access network and a central control entity and the data path interface towards the first hop router, which is defined by the IEEE 802 Data Link SAP. Data Link Physical Higher Layers Data Link Physical Data Link Physical Data Link Physical Data Link Physical Data Link Physical Higher Layers Control I/f Higher Layers R1 STA CORE

omniran CF00 5 Control is detached from the data path in the SDN model SDN is based on the same architectural model as used by OmniRAN to describe the access infrastructure within the scope of IEEE 802 Effectively access networks enabling dynamic attachment of terminals to a communication infrastrucute have always been a kind of ‘software defined’ networks. –‘Software’ can just be considered as a synonym of the control protocols of the legacy access networks models. Medium Data Link Physical Data Link Physical Higher Layers Control I/f Control Entity CORE Openflow Switch Specification v1.3.2

omniran CF00 6 R3 in the scope of NDS Functional Requirements IEEE 802 network discovery and selection should support more complex scenarios: –Multiple access technologies –Multiple different access networks –Multiple subscriptions –Specific service requirements –No a-priori knowledge about offered services CORE A CORE B CORE C Access Network >2< Access Network >3< Access Network >1<

omniran CF00 7 Network Discovery and Selection Functions A process which allows a station to retrieve the list of all access network interfaces in reach by –Passive scanning –Active scanning –Data base query Retrieving supplementory information for each of the access network interfaces to learn about –Identity of the access network –Supported Subscriptions –Supported Services Some algorithm in the station, which processes all the retrieved information, for determination of the ‘best’ access network interface to connect to.

omniran CF00 8 NDS Roles and Identifiers User –One or more Subscriptions Subscription Identifier {NAI} + Subscription Name {String} Terminal –Station STA {EUI-48} Access Network –One or more Access Network Interfaces ANI {EUI-48} –Access Network AN Identifier {EUI-48} + AN Name {String} –Supported Subscription Services –Supported User Services –Access Network Capabilities Record of capabilities {t.b.d. (ANQP???} CORE –Subscription Service – ‘Termination point of AAA’ SSP Identifier {FQDN} + SSP Name {String} –User Service – ‘Termination point of IEEE 802 user plane’ USP Identifier {???} + USP Name {String} FFS: Is model sufficient for complex roaming scenarios? Split of CORE into SSP and USP (control- & user plane functions)?

omniran CF00 9 Conclusion There is evidence that R3-Control should be separated from R3-Data –SDN Model –Protocol architecture –NDS functional requirements How to introduce the separation into the NRM? –What would be appropriate for SDN? –What are the entities and identifiers for the termination points of Control and Data? –Should we introduce such separation also for other interfaces of the NRM? R4 ??? No final conclusion yet, however strong evidence.