The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit,

Slides:



Advertisements
Similar presentations
Cosmic Ray Test of GEM- MPI/TPC in Magnetic Field Hiroshima University Kuroiwa CDC Group Mar
Advertisements

Detector R&D Jan Timmermans Programme: ≥ 2003
M. Chefdeville NIKHEF, Amsterdam MPGD, Hawaii 07
Maximilien Chefdeville NIKHEF, Amsterdam RD51, Amsterdam 17/04/2008
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
Bulk Micromegas Our Micromegas detectors are fabricated using the Bulk technology The fabrication consists in the lamination of a steel woven mesh and.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
1 Pixel Readout of GEMs Motivation The Setup Results Next Steps A. Bamberger, K. Desch, J. Ludwig, M. Titov, U. Renz, N. Vlasov, P. Wienemann, A. Zwerger.
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
Status ‘Si readout’ TPC at NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA.
Readout of a TPC with the MEDIPIX2 CMOS chip as direct anode Saclay/DapniaP. Colas Y. Giomataris NIKHEFA. Fornaini H. van der Graaf J. Timmermans J. Visschers.
Kolympari, Crete, June 16, Study of avalanche fluctuations and energy resolution with an InGrid-TimePix detector P. Colas Progress report, based.
Status of DRIFT II Ed Daw representing the DRIFT collaboration: Univ. of Sheffield, Univ. of Edinburgh, Occidental College, Univ. of New Mexico Overview.
ECFA Meeting, Valencia – November 8, First TimePix tests at CERN David Attié ECFA Meeting – Valencia – 8 November 2006.
1 Pixel readout for a TPC LCWS 2010 – Tracking TPC R&D session 27 March 2010 Jan Timmermans On behalf of the Bonn/CERN/Freiburg/Nikhef/Saclay groups.
Fred Hartjes 1 6 th RD51 collaboration workshop, Bari (Italy), October 9, 2010 Gossip testbeam August 12 – 22, 2010 Maarten van Dijk Martin Fransen Harry.
GOSSIP : Gas On Slimmed SIlicon Pixels NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay.
A. Chaus, D. Attie, P. Colas, M. Titov CEA Saclay, Irfu/SPP, France Ingrid OUTLINE: OUTLINE:  “Octopuce” Uniformity Studies in the Laboratory  DESY Test-Beam.
Detector Research & Development RECFA, NIKHEF, Amsterdam. Sept 23, 2005 Harry van der Graaf, NIKHEF, Amsterdam.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Annual Meeting 2008 – October 6 th 1 David Attié P. Colas, X. Coppolani, E. Delagnes, A. Giganon, I. Giomataris Status of Saclay.
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
1 Development of the input circuit for GOSSIP vertex detector in 0.13 μm CMOS technology. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Update on TPC R&D C. Woody BNL DC Upgrades Meeting October 9, 2003.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
Micropattern on CMOS pixels NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers.
21 April 2004LCWS 2004 Paris1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct pixel segmented anode) NIKHEF:
TPC PAD Optimization Yukihiro Kato (Kinki Univ.) 1.Motivation 2.Simple Monte Carlo simulation 3.PAD response 4.PAD response for two tracks 5.Summary &
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,
Timepix at NIKHEFMedipix meeting, CERN – Some recents results at NIKHEF M. Chefdeville, E. Bilevych, H. van de Graaf, J. Timmermans D. Attié,
1 Readout of a TPC by Means of the MediPix CMOS Pixel Sensor NIKHEFAuke-Pieter Colijn Arno Aarts Alessandro Fornaini Maximilien Chefdeville Harry van der.
23 March 2005International TPC R&D Meeting Berkeley 1 Readout of a TPC using the Medipix2 CMOS pixel sensor (detection of single electrons on a direct.
GEM basic test and R&D plan Takuya Yamamoto ( Saga Univ. )
1 InGrid: the integration of a grid onto a pixel anode by means of Wafer Post Processing technology 16 April 2008 Victor M. Blanco Carballo.
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array Gas On Slimmed SIlicon Pixels.
Status of New TPC( Ⅱ ) Performance Study Yohei Nakatsugawa LEPS Meeting in Taiwan.
you me  when it all started to work  progress made  outlook.
1 Update on Silicon Pixel Readout for a TPC at NIKHEF LCWS08 - Chicago 19 Nov 2008 Jan Timmermans NIKHEF.
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
1 The Silicon TPC System EUDET Extended SC meeting 31 August 2010 Jan Timmermans NIKHEF/DESY.
1 Status ‘Si readout’ TPC at NIKHEF NIKHEFMaximilien Chefdeville Auke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
1 The pixel readout of TPCs Max Chefdeville, NIKHEF, Amsterdam.
New gaseous detectors: the application of pixel sensors as direct anode NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan.
A.Ochi*, Y.Homma, T.Dohmae, H.Kanoh, T.Keika, S.Kobayashi, Y.Kojima, S.Matsuda, K.Moriya, A.Tanabe, K.Yoshida Kobe University PSD8 Glasgow1st September.
November 8, 2006ECFA ILC Workshop1 Recent developments for digital TPC readout Jan Timmermans - NIKHEF Micro Pattern Gas Detector: GridPix Integration.
Six modules Micromegas TPC beam test & Test bench 12/4/2012W.Wang_RD51 mini week1 D. Attié, P. Colas, M. Dixit, P. Hayman, W. Wang.
LCWS Bangalore, March 13, 2006 P. Colas, Digital TPC R&D1 R&D for a digital TPC The SiTPC project The digital TPC concept and advantages VLSI electronics:
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
IEEE/NSS Oct 22, Electron Counting and Energy Resolution Study from X-ray conversion in Argon Mixtures with an InGrid-TimePix detector. D. ATTIÉ.
Status report NIKHEF NIKHEFAuke-Pieter Colijn Alessandro Fornaini Harry van der Graaf Peter Kluit Jan Timmermans Jan Visschers Saclay CEA DAPNIAMaximilien.
A.Ochi Kobe University MPGD2009 Crete 13 June 2009.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
The digital TPC: the ultimate resolution P. Colas GridPix: integrated Timepix chips with a Micromegas mesh.
Development of a Front-end Pixel Chip for Readout of Micro-Pattern Gas Detectors. Vladimir Gromov, Ruud Kluit, Harry van der Graaf. NIKHEF, Amsterdam,
Timepix in EUDet – CERN contribution Michael Campbell PH Department CERN Geneva, Switzerland Spokesman, Medipix2 Collaboration.
Medipix3 chip, downscaled feature sizes, noise and timing resolution of the front-end Rafael Ballabriga 17 June 2010.
Thorsten Lux. Charged particles X-ray (UV) Photons Cathode Anode Amplification Provides: xy position Energy (z position) e- CsI coating 2 Gas (Mixture)
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
MICROMEGAS per l’upgrade delle Muon Chambers di ATLAS per SLHC Arizona, Athens (U, NTU, Demokritos), Brookhaven, CERN, Harvard, Istanbul (Bogaziçi, Doğuş),
Gossip : Gaseous Pixels Els Koffeman (Nikhef/UvA) (Harry van der Graaf, Jan Timmermans, Jan Visschers, Maximilien Chefdeville, Vladimir Gromov, Ruud Kluit,
GOSSIP : a vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array NIKHEFAuke-Pieter Colijn Alessandro Fornaini.
TPC for 4-th concept S.Popescu IFIN-HH, Bucharest.
Large Prototype TPC using Micro-Pattern Gaseous Detectors
Experience from ZEUS Microvertex detector is running for more than five years without access! E.N Koffeman NIKHEF & University of Amsterdam.
R&D for a digital TPC The SiTPC project
Avalanche flutuations with InGrid/TimePix
Presentation transcript:

The detection of single electrons using the MediPix2/Micromegas assembly as direct pixel segmented anode NIKHEF: A. Fornaini, H. van der Graaf, P. Kluit, J. Timmermans, J.L. Visschers CEA/SACLAY: P.Colas, Y. Giomataris Univ. Twente: J. Schmitz CERN: E. Heijne, M. Campbell

Goal New readout for a TPC (Time Projection Chamber) Readout Pads (~5 mm 2 ) To readout electronics GAS Gas Multiplication System (wires, Gas gain grid, …) Drift field 2D pads + drift time = 3D information about track  Very interesting for high energy physics experiments Charged track 1

Goal (2) OUR GOAL: - pads (5 mm 2 )  CMOS pixel chip (100  m x 100  m) - integrate gas gain grid on the CMOS pixel chip (wafer post processing) - future Linear Collider (or LHC upgrade? Or Babar/Belle?) MANY ADVANTAGES: - Simpler to build: gas gain grid, pads, readout circuitry  1 single element - Better resolution - Single electron detection: dE/dx measurements,  -ray suppression - Large number of readout channels, small pixel size  very low hit occupancy Proof-of-principle with the Medipix2 chip2

The Medipix2 chip -A CMOS chip in.25  m technology for X-ray imaging -Usually bump-bonded to a semiconductor X-ray sensor -256 x 256 pixels, area = 1.4 x 1.4 cm 2 -Pixel size: 55  m x 55  m -Positive or negative input charge (e - or holes collection) -13-bit counter per pixel -Count rates of 1 MHz/pixel (0.33 GHz/mm 2 ) Goals: X-ray imaging for many applications (medical, material analysis, synchrotron applications, etc.)  m x  m matrix periphery 3

MediPix2 chip (no sensor) Brass spacer block Printed circuit board Aluminum base plate Micromegas Cathode (drift) plane Baseplate Drift space: 15 mm Micromegas/Medipix2 prototype TPC: setup 4 Gas volume

Spacer Anode plane ~300 V Multiplication (high Electric field) DRIFT (low Electric field) 50  m 60  m pitch The Medipix2 CMOS chip faces an electric field of 350 V/50 μm = 7 kV/mm !! 5  m 35  m 5 Micromegas/MPix2 prototype TPC: setup(2)

Standard Medipix2 chip ~20% metallized surface ~80% insulator Modified Medipix2 chip (lift-off post-processing, Univ. Twente /MESA+) ~80% metallized surface, ~20% insulator 45 x 45 μm 2 sens. pixels 6 Micromegas/MPix2 prototype TPC: setup(3)

Micromegas-equipped TPC: setup (4) 7

Micromegas-equipped TPC: setup (5) 8

Micromegas-equipped TPC: results 55 Fe, 1s 55 Fe, 10s Metallized Mpix2 (February 2004)Ar 95 /Isob, 5 9

Micromegas-equipped TPC: results (2) 90 Sr, 1s (February 2004) Metallized Mpix2 Ar 95 /Isob, 5 10

(March-April ‘04) Metallized Mpix2 He80 Isob. 20 (G= ) No rad. source 15 sec exposure (NO TRIGGER!) 11  Cosmic track

(March-April ‘04) Metallized Mpix2 He80 Isob. 80 (G= ) No rad. source 15 sec exposure 12  Cosmic track

(March-April ‘04) Metallized Mpix2 He80 Isob. 80 (G= ) No rad. source 60 sec. exposure 13  Cosmic track

(March-April ‘04) Metallized Mpix2 He80 Isob. 80 (G= ) No rad. Source 1 sec exposure  -ray! 14

Primary electrons detection - Data set: 6000 cosmics images, sec. acq. time, no trigger - Noisy pixels eliminated - Events with MIP selected (pattern recognition algorithm) - Cuts applied - track xy projection> 50 pixels - more than 5 hits/track - transverse rms < 4 pixels - associated pixels/total pixels hit > 80% 164 tracks selected from our data sample 15

Projected lengths (pixels) Fitted clusters per mm Fitted e- per mm 16

Efficiency for single electrons - count number of charge clusters C associated with the track - C/L  detected primary electrons/unit length, N measured - primary electrons released by a MIP/unit length: N expected (from literature) For each 3D track L:  N measured /N expected  with He-based gas mixtures (He/isobuthane 80/20) 17 Single electrons detection efficiency

Efficiency: gas gain and pixel threshold  depends on the Mpix2 threshold and gas gain Working point: THR = 3000 e- High efficiency: low threshold, high gain but a not too high gain is preferable (risk of discharges)  so a low threshold is even more important p Aval. (n) = 1/G exp(-n/G) p thr. (n) = ∫ THR 1/G exp(-n/G) Inf. To reach higher gains, very high voltages were applied  several MPix2 were damaged 18 calculation

The Moire’ effect (image taken with 90 Sr source) - Bands of lower efficiency - Two perpendicular directions - Periodicity of 12 pixels - Effect less pronounced in metallized MPix2 chips 19

The Moire’ effect (2) Micromegas: 35  m diam. holes, 60  m pitch Medipix2: 55  m X 55  m pixels, 55  m pitch Hole position above the pixel shifts along a column or row Repetition every 60/(60-55) = 12 pixels  matches the periodicity of the inefficiency bands grid holes pixels Hole above pixel center Hole above 2-4pixels border 1) e- pulled to a pixel further away, E field weaker  less multiplication + 2) charge splits in 2 adjacent pixels SOLUTION: integration of gas gain grid on the CMOS chip 20 mismatch!

Conclusions and future plans Short term goals: data analysis and simulation Medium term goals: add a cosmic rays triggering system (scintillators), beam test at CERN (e-, ,  …) Long term goals: design of a new TimePix pixel CMOS chip for use in a TPC environment, integration of the gas gain grid (Micromegas) on the MPix2 (and then TimePix) by means of wafer post-processing technology. - Proof-of principle using Medipix2 was successful: a CMOS pixel chip can detect electrons in a gas multiplication system! 21

Projected lengths (pixels) Fitted clusters per mm Fitted e- per mm

Efficiency D H L ▬ select tracks whose projection onto the sensitive pixel plane does not cross the boundary of this plane (to avoid ambiguities) ▬ track 3D length L = √(D 2 +H 2 ) ▬ count number of charge clusters N: N/L gives information on number of primary electrons per unit length detected P Det ▬ comparison with number of electrons released by a MIP in our gas mixture as given by literature (P Calc ) gives information about detection efficiency:  = P Det /P Calc > 90% (He based gas mixt.)