„Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock Krynica, June 2005 Quantum Optics.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Experiments with ultracold atomic gases Andrey Turlapov Institute of Applied Physics, Russian Academy of Sciences Nizhniy Novgorod.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Temperature scale Titan Superfluid He Ultracold atomic gases.
What can we learn about quantum gases from 2- and 3-atom problems? Fei Zhou University of British Columbia, Vancouver at Institute for Nuclear Theory,
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Progress on Light Scattering From Degenerate Fermions Seth A. M. Aubin University of Toronto / Thywissen Group May 20, 2006 DAMOP 2006 Work supported by.
Selim Jochim, Universität Heidelberg
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Lectures on Quantum Gases Lectures G. Shlyapnikov 2015 年 6 月 10, 17, 25, 30 日, 下午 3:30-5:00 频标楼 4 楼报告厅 About the speaker : Director of Research at CNRS,
Bright and Gap Solitons and Vortex Formation in a Superfluid Boson-Fermion Mixture Sadhan K. Adhikari Institute of Theoretical Physics UNESP – São Paulo.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Experiments with Fermi e Bose atomic gases in optical lattices Giovanni Modugno LENS, Università di Firenze, and INFM XXVII Convegno di Fisica Teorica,
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Bose-Fermi mixtures in random optical lattices: From Fermi glass to fermionic spin glass and quantum percolation Anna Sanpera. University Hannover Cozumel.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Jerzy Zachorowski M. Smoluchowski Institute of Physics, Jagiellonian University Nonlinear Spectroscopy of Cold Atoms, Preparations for the BEC Experiments.
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Production and control of KRb molecules Exploring quantum magnetisms with ultra-cold molecules.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
strongly interacting fermions: from spin mixtures to mixed species
ultracold atomic gases
BOSE-EINSTEIN CONDENSATES A REVIEW OF EXPERIMENTAL RESULTS
Institut für Laserphysik
Bose-Einstein Condensation Ultracold Quantum Coherent Gases
Novel quantum states in spin-orbit coupled quantum gases
One-Dimensional Bose Gases with N-Body Attractive Interactions
Presentation transcript:

„Fermi-Bose mixtures of 40 K and 87 Rb atoms: Does a Bose Einstein condensate float in a Fermi sea?" Klaus Sengstock Krynica, June 2005 Quantum Optics VI Institut für Laserphysik Universität Hamburg Mixtures of ultracold Bose- and Fermi-gases Bright Fermi-Bose solitons Dynamics of the system: e.g.: mean field driven collapse

Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture Spinor-BEC BEC ‘in Space‘ Atom-Guiding in PBF

Cold Quantum Gas Group Hamburg Fermi-Bose-Mixture Spinor-BEC Poster by Silke Ospelkaus on Tuesday Poster by Jochen Kronjäger on Monday

Bose-Einstein Condensation TTcTc 1 N 0 /N 1-(T/T c ) 3 T>T c T<T c Bose-Einstein distribution S. N. BoseA. Einstein critical temperature for BEC

Bose-Einstein Condensation TTcTc 1 N 0 /N 1-(T/T c ) 3 T>T c T<T c Bose-Einstein distribution critical temperature for BEC High-temperature effect !!!

Fermions in a Harmonic Trap FF 1 f()f() T>T F T=0 Fermi-Dirac distribution E. FermiP.A.M. Dirac T=0 T~T F T>T F Fermi temperature FF

Quantum statistical effects also for T~T F, but more difficult to see... Fermions in a Harmonic Trap FF 1 f()f() T>T F T<T F Fermi-Dirac distribution T=0 T~T F T>T F Fermi temperature

Fermionic Quantum Gases difficulty to reach low temperatures for Fermi gases: no s-wave scattering of identical fermions!  no thermalization in evaporative cooling a)  use different spin components (D. Jin et al. 98) b)  use e.g. a BEC to cool a Fermi sea (and look to the details...) thermal Bosons Fermions condensate fraction

e.g.: Momentum Distributions of Fermions and Bosons 0 p P(p) 0 p pFpF -p F T<<T c,T F 0 0 p p P(p) 0 0 p p pFpF -p F pFpF T>>T c,T F T<T c,T F

e.g.: Momentum Distributions of Fermions and Bosons 0 0 p p P(p) 0 0 p p pFpF -p F pFpF T>>T c,T F T<T c,T F

e.g.: Superfluidity in Quantum Gases: a) Bosons C. Raman et al., PRL. 83, (1999). Image from: P. Engels and E. A. Cornell O.M. Maragò et al., PRL 84, 2056 (2000) drag free motion scissors modes vortices, vortex lattice MIT Oxford JILA, ENS, MIT

Superfluidity in Quantum Gases: b) Fermions Cooper pairs - BCS superfluidity T0T0exponentially difficult to reach (valid for k F |a|<<1 ) e.g.: k F a=-0.2 -> T BCS ~ T F (very very small) (very) low-temperature effect

Superfluidity in Quantum Gases: b) Fermions ways out of it: manipulate T BCS using a Feshbach resonance BEC of molecules BEC/BCS crossover Duke ENS Innsbruck JILA MIT Rice use additional particles to mediate interactions - Bosons ?...

  Fermi-Bose Mixtures boson mediated superfluidity boson mediated superfluidity in a lattice F. Illuminati and A. Albus, Phys. Rev. Lett. 93, (2004)... L. Viverit, Phys. Rev. A 66, (2002) F. Matera, Phys. Rev. A 68, (2003) T. Swislocki, T. Karpiuk, M. Brewsczyk, Poster 1, Monday...  interplay between tunneling and various on-site-interactions

Fermi-Bose Mixtures special interest: mixtures in optical lattices  new phases, composite particles,... composite fermions M. Cramer et al., Phys. Rev. Lett. 93, (2004) there is even more: U bf U bb II FD II SF II FL I FL I DM II SF II FL II DM II FL 01  b  U bb.... II DM M. Lewenstein et al., Phys. Rev. Lett. 92, (2004)

effective interactions: bosons fermions Bose-Bose int.Bose-Fermi int. see also: G. Modugno et al., Science 297, 2240 (2002) S. Inouye et al., PRL 93, (2004) e.g.: 40 K - 87 Rb mixture: g B > 0 (a BB ~ 100 a 0 ) g BF < 0 (a BF ~ -280 a 0 ) Fermi-Bose Mixtures new degrees of freedom due to additional interactions tunable by Feshbach resonances!

Fermi-Bose Mixtures  detailed understanding of interactions and also of loss processes is necessary Bose-Fermi interaction physics - system boundary conditions - coupled excitations (e.g. exp. in Jin group, JILA and Inguscio group, LENS) - Bose-Fermi interactions - interspecies correlations - novel phases - heteronuclear molecules Bose-Fermi interaction physics - system boundary conditions - coupled excitations (e.g. exp. in Jin group, JILA and Inguscio group, LENS) - Bose-Fermi interactions - interspecies correlations - novel phases - heteronuclear molecules 6 Li/ 7 Liat Duke U., ENS Paris, Innsbruck U., Rice U. 6 Li/ 23 Na at MIT 40 K/ 87 Rbat LENS Florence, Jila Boulder, Hamburg U., ETH Zürich

Hamburg Setup two-species 2D-MOT flux: 87 Rb ~ 5 · 10 9 s K ~ 5·10 6 s -1 two-species 3D-MOT Rb ~ K ~ 3·10 7 within s magnetic trap ax ~ 11 Hz (Rb) rad ~ 260 Hz (Rb) in addition: dipole trap soon: optical lattice

Hamburg Setup experimental setup laser systems Mai 2003 first BEC 7/2004 first degenerate Fermi gas 8/2004

Sympathetic Cooling state of the art (temperature): 5x Li at T~0.05 T F 1x K at T~0.15 T F (for K-Rb cooling) number of K-atoms number of Rb-atoms ax =11Hz, r =330Hz ax =11Hz, r =267Hz only BEC: >5*10 6 only Fermions: >1*10 6 state of the art (particle numbers):

Attractive Boson-Fermion Interaction experimental signatures: Fermion cloud without BEC a K-Rb ~ -279 a 0 + BEC =  effective potential for fermions: Fermion cloud with BEC

Mean Field Instability of the System BEC Fermi-Sea BEC attraction of fermions BEC density increase runaway collapse

Collapse Experiments 7 Li collapse Sackett et al., PRL 82, 876 (1999) J.M. Gerton et al., Nature 8, 692 (2000) 85 Rb "Bosenova" Donley et al., Nature 412, 295 (2001) G. Modugno et al., Science 297, 2240 (2002) Images from: 40 K / 87 Rb Fermi-Bose collapse

Fermi-Bose Mixtures in the Large Particle Limit: Local Collapse Dynamics

Fermi-Bose Mixtures in the Large Particle Limit: Collapse but...: is it just losses??  locally high density: enhanced two- and three-body losses??

Lifetime Regimes  = 21ms  = 197ms time/frequency scales: - r (K) = 394 Hz - ax (K) = 17 Hz - thermalization ms - collapse: ~ 20 ms - loss processes ms 3-body-loss -> collapse-time due to trap dynamics loss and collapse dynamics can be distinguished!

3-Body Losses 0 T dt d 3 rn B 2 r,tn F r,t N K t m 6 s lnN K T N K 0 T Measurement does not depend on K atom Rb |2,2> decay, we reproduce the Result: number calibration For 87 value from Söding et al. [Appl. Phys. B69, 257 (1999)] K KRb cm 6 s ( +/- 0.2)

Fermi-Bose Mixtures in the Large Particle Limit: Stability Diagram stable mixture non stable mixture a KRb =-281 a 0 (S. Inouye et al., PRL 93, (2004)) N Boson N Fermion

Does a Bose Einstein condensate float in a Fermi sea?... it depends...

Solitons in Matter Waves S. Burger et al., PRL 83, 5198 (1999) J. Denschlag et al., Science 287, 97 (2000) g>0 B. P. Anderson et al., PRL 86, 2926 (2001) filled solitons B. Eiermann et al. PRL 92, (2004) gap solitons "negative mass" dark solitons quantum pressure interactions L. Khaykovich et al., Science 296, 1290 (2002) g<0 bright solitons quasi-1D regime collapse for E int >E radial N Soliton < 10 4 K.S. Strecker et al., Nature 417, 150 (2002)

1D: Bright Mixed ‘‘Solitons‘‘ Bose-Bose repulsion versus Fermi-Bose attraction T. Karpiuk, M. Brewczyk, S. Ospelkaus-Schwarzer, K. Bongs, M. Gajda, and K. Rzążewski, PRL 93, (2004) behaviour in the trap: after switching off the trap: dynamics: constant envelope simulation from M. Brewczyk et al. theory our data theory by T. Karpiuk, M. Brewczyk, M. Gaida, K. Rzazewski

Collision simulation shows complex dynamics: - repulsive - shape oscillations - particle exchange fermionic character due to the Pauli-principle ? Simulation from M. Brewczyk et al.

Bose-Fermi Mixtures with Attractive Interactions Physics in the High Density Limit trap aspect ratio effective interaction ("density") collapse bright mixed soliton attractive repulsive boson-induced BCS ? Influence of loss processes ?

Hamburg Team Kai Bongs - Atom optics V. M. Baev - Fibre lasers Spinor BEC: Jochen Kronjäger Christoph Becker Thomas Garl Martin Brinkmann Fermi-Bose mixtures K-Rb: Silke Ospelkaus-Schwarzer Christian Ospelkaus Philipp Ernst Oliver Wille Manuel Succo Stefan Salewski Ortwin Hellmig Arnold Stark Sergej Wexler Oliver Back Gerald Rapior Victoria Romano Dieter Barloesius Reinhard Mielck K. Se Staff Q. Gu - Theory BEC in Space: Anika Vogel Malte Schmidt Atom guiding in PCF: Stefan Vorath Peter Moraczewski

Cold Quantum Gas Group Hamburg Hamburg is a nice city... (for physics ) (and for visits!)