Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon, 13.09.2006.

Slides:



Advertisements
Similar presentations
Summing planar diagrams
Advertisements

Yerevan State University / Leibniz Universität Hannover Supersymmetry in Integrable Systems - SIS'10 International Workshop, August 2010, Yerevan,
N =4 Supersymmetric Gauge Theory, Twistor Space, and Dualities David A. Kosower Saclay Lectures Fall Term 2004.
Giant Magnon and Spike Solutions in String Theories Bum-Hoon Lee Center for Quantum SpaceTime(CQUeST)/Physics Dept. Sogang University, Seoul, Korea PAQFT08,
The Giant Magnon and Spike Solution Chanyong Park (CQUeST) Haengdang Workshop ’07, The Giant Magnon and Spike Solution Chanyong Park.
Chanyong Park 35 th Johns Hopkins Workshop ( Budapest, June 2011 ) Based on Phys. Rev. D 83, (2011) arXiv : arXiv :
Semi-Classical strings as probes of AdS/CFT M. Kruczenski Purdue University Based on: arXiv: R. Roiban, A. Tirziu, A. Tseytlin, M.K. arXiv:
Holographic three-point functions of semiclassical states Konstantin Zarembo (Nordita) "From sigma models to four-dimensional QFT“, Hamburg, K.Z.,
World-sheet Scattering in AdS 5 xS 5 Konstantin Zarembo (Uppsala U.) Integrability in Gauge and String Theory, Paris, T.Klose, T.McLoughlin, R.Roiban,
1 Interacting Higher Spins on AdS(D) Mirian Tsulaia University of Crete.
Spin Chain in Gauge Theory and Holography Yong-Shi Wu Department of Physics, University of Utah, Center for Advanced Study, Tsinghua University, and Shanghai.
Off-shell symmetry algebra of the superstring DMITRI BYKOV Trinity College Dublin Steklov Mathematical Institute Moscow 16 Irish Quantum Field Theory meeting.
Spiky strings, light-like Wilson loops and a pp-wave anomaly M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K.
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: arXiv: A. Tseytlin, M.K. arXiv: arXiv: R. Ishizeki,
Large spin operators in string/gauge theory duality M. Kruczenski Purdue University Based on: arXiv: (L. Freyhult, A. Tirziu, M.K.) Miami 2009.
Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) EuroStrings 2006 Cambridge, 4/4/06 Thanks to: Niklas Beisert (Princeton) Johan.
Functional renormalization – concepts and prospects.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
Spiky Strings in the SL(2) Bethe Ansatz
Planar diagrams in light-cone gauge hep-th/ M. Kruczenski Purdue University Based on:
A window into 4D integrability: the exact spectrum of N = 4 SYM from Y-system Vladimir Kazakov (ENS,Paris) “Great Lakes Strings” Conference 2011 Chicago.
Spiky Strings and Giant Magnons on S 5 M. Kruczenski Purdue University Based on: hep-th/ (Russo, Tseytlin, M.K.)
Strings in AdS pp-waves M. Kruczenski Purdue University Based on: arXiv: A. Tseytlin, M.K. arXiv: R. Ishizeki, A. Tirziu, M.K. + work.
String / gauge theory duality and ferromagnetic spin chains Rob Myers, David Mateos, David Winters Arkady Tseytlin, Anton Ryzhov M. Kruczenski Princeton.
Introduction to Gauge Higgs unification with a graded Lie algebra Academia Sinica, Taiwan Jubin Park (NTHU)  Collaboration with Prof. We-Fu.
Status of Spectral Problem in planar N=4 SYM Vladimir Kazakov (ENS,Paris) Collaborations with: Nikolay Gromov (King’s College, London) Sebastien Leurent.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Bethe Ansatz and Integrability in AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) “Constituents, Fundamental Forces and Symmetries of the Universe”,
Integrability in Superconformal Chern-Simons Theories Konstantin Zarembo Ecole Normale Supérieure “Symposium on Theoretical and Mathematical Physics”,
PRIN meeting - Pisa, 17/5/2013 S. Penati 1 A Survey in ABJM: Scattering Amplitudes and Wilson loops Silvia Penati University of Milano-Bicocca and INFN.
Constraining theories with higher spin symmetry Juan Maldacena Institute for Advanced Study Based on: and by J. M. and A. Zhiboedov.
Exact Results for perturbative partition functions of theories with SU(2|4) symmetry Shinji Shimasaki (Kyoto University) JHEP1302, 148 (2013) (arXiv: [hep-th])
Integrability of N=6 Super Chern-Simons Theories Dongsu Bak University of Seoul with S. J. Rey and D. Kang (KIAS, 9/24/2008) TexPoint fonts used in EMF.
Supersymmetric Quantum Field and String Theories and Integrable Lattice Models Nikita Nekrasov Integrability in Gauge and String Theory Workshop Utrecht.
Constraining theories with higher spin symmetry Juan Maldacena Institute for Advanced Study Based on & to appearhttp://arxiv.org/abs/
Gauge Theory, Superstrings and Supermagnets Volker Schomerus SYSY Goettingen 2012.
AdS 4 £ CP 3 superspace Dmitri Sorokin INFN, Sezione di Padova ArXiv: Jaume Gomis, Linus Wulff and D.S. SQS’09, Dubna, 30 July 2009 ArXiv:
Domain-wall/QFT correspondence Wen-Yu Wen Academia Sinica Feb 24, 2006 A Bridge Connecting Gravity and Gauge Theory.
World-sheet Scattering in AdS 5 xS 5 Konstantin Zarembo (Uppsala U.) Random Matrix Theory: Recent Applications, Copenhagen, T.Klose, T.McLoughlin,
Minkyoo Kim (Wigner Research Centre for Physics) 9th, September, 2013 Seminar in KIAS.
Dressing factor in integrable AdS/CFT system Dmytro Volin Annecy, 15 April 2010 x x x x x x x x x x x x 2g - 2g x x x x x x x x x x arXiv: arXiv:
2 Time Physics and Field theory
Numerical Solution of the Spectral Problem and BFKL at Next-to-Next-to-Leading Order in N=4 SYM Fedor Levkovich-Maslyuk King’s College London based on.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
Strings, Gravity and the Large N Limit of Gauge Theories Juan Maldacena Institute for Advanced Study Princeton, New Jersey.
Bethe Ansatz in AdS/CFT: from local operators to classical strings Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan,
Two scalar fields of the N=4 SYM theory: Long local operators: Can be mapped to the spin chain states: The mixing matrix is an integrable spin chain.
Integrability for the Full Spectrum of Planar AdS/CFT Nikolay Gromov DESY/HU/PNPI V.Kazakov and P.Vieira.
Integrability and Bethe Ansatz in the AdS/CFT correspondence Konstantin Zarembo (Uppsala U.) Nordic Network Meeting Helsinki, Thanks to: Niklas.
A nonperturbative definition of N=4 Super Yang-Mills by the plane wave matrix model Shinji Shimasaki (Osaka U.) In collaboration with T. Ishii (Osaka U.),
Finite Volume Spectrum of 2D Field Theories from Hirota Dynamics Vladimir Kazakov (ENS,Paris) Conference in honor of Kenzo Ishikawa and Noboru Kawamoto.
Three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP) hep-th/
Supersymmetric three dimensional conformal sigma models Collaborated with Takeshi Higashi and Kiyoshi Higashijima (Osaka U.) Etsuko Itou (Kyoto U. YITP)
The nonperturbative analyses for lower dimensional non-linear sigma models Etsuko Itou (Osaka University) 1.Introduction 2.The WRG equation for NLσM 3.Fixed.
Seiberg Duality James Barnard University of Durham.
Integrability and AdS/CFT correspondence in three dimensions Konstantin Zarembo École Normale Supérieure Paris “Sakharov Conference”, Moscow,
Bethe Ansatz in AdS/CFT Correspondence Konstantin Zarembo (Uppsala U.) J. Minahan, K. Z., hep-th/ N. Beisert, J. Minahan, M. Staudacher, K. Z.,
B.-H.L, R. Nayak, K. Panigrahi, C. Park On the giant magnon and spike solutions for strings on AdS(3) x S**3. JHEP 0806:065,2008. arXiv: J. Kluson,
Bum-Hoon Lee Sogang University, Seoul, Korea D-branes in Type IIB Plane Wave Background 15th Mini-Workshop on Particle Physics May 14-15, 2006, Seoul National.
Semiclassical correlation functions in holography Kostya Zarembo “Strings, Gauge Theory and the LHC”, Copenhagen, K.Z.,
Nikolay Gromov Based on works with V.Kazakov, S.Leurent, D.Volin F. Levkovich-Maslyuk, G. Sizov Nikolay Gromov Based on works with.
Nikolay Gromov Based on works with V.Kazakov, P.Vieira & A.Kozak Nikolay Gromov Based on works with V.Kazakov, P.Vieira & A.Kozak Symposium on Theoretical.
Of spinning strings in DMITRI BYKOV Trinity College Dublin Steklov Mathematical Institute Moscow Based on joint work arXiv: with L.F.ALDAY, G.ARUTYUNOV.
Quantum Mechanical Models for Near Extremal Black Holes
Vladimir Kazakov (ENS,Paris)
Gauge/String Duality and Integrable Systems
T. McLoughlin, J. Minahan, R. Roiban, K. Zarembo
Exact Results in Massive N=2 Theories
Quantum properties of supersymmetric gauge theories
Presentation transcript:

Bethe ansatz in String Theory Konstantin Zarembo (Uppsala U.) Integrable Models and Applications, Lyon,

AdS/CFT correspondence Maldacena’97 Gubser,Klebanov,Polyakov’98 Witten’98

Planar diagrams and strings time ‘t Hooft coupling: String coupling constant = (kept finite) (goes to zero)

Strong-weak coupling interpolation Circular Wilson loop (exact): Erickson,Semenoff,Zarembo’00 Drukker,Gross’00 0 λ SYM perturbation theory … + String perturbation theory Minimal area law in AdS 5

Weakly coupled SYM is reliable if Weakly coupled string is reliable if Can expect an overlap.

N=4 Supersymmetric Yang-Mills Theory Field content: Action: Gliozzi,Scherk,Olive’77 Global symmetry: PSU(2,2|4)

Spectrum Basis of primary operators: Dilatation operator (mixing matrix): Spectrum = {Δ n }

Local operators and spin chains related by SU(2) R-symmetry subgroup a b a b

Tree level: Δ=L (huge degeneracy) One loop: Minahan,Z.’02

Zero momentum (trace cyclicity) condition: Anomalous dimensions: Bethe’31 Bethe ansatz

Higher loops Requirments of integrability and BMN scaling uniquely define perturbative scheme to construct dilatation operator through order λ L-1 : Beisert,Kristjansen,Staudacher’03

The perturbative Hamiltonian turns out to coincide with strong-coupling expansion of Hubbard model at half-filling: Rej,Serban,Staudacher’05

Asymptotic Bethe ansatz Beisert,Dippel,Staudacher’04 In Hubbard model, these equations are approximate with O(e -f(λ)L ) corrections at L→∞

Anti-ferromagnetic state Weak coupling: Strong coupling: Q: Is it exact at all λ? Rej,Serban,Staudacher’05; Z.’05; Feverati,Fiorovanti,Grinza,Rossi’06; Beccaria,DelDebbio’06

Arbitrary operators Bookkeeping: “letters”: “words”: “sentences”: Spin chain: infinite-dimensional representation of PSU(2,2|4)

Length fluctuations: operators (states of the spin chain) of different length mix Hamiltonian is a part of non-abelian symmetry group: conformal group SO(4,2)~SU(2,2) is part of PSU(2,2|4) so(4,2): M μν - rotations P μ - translations K μ - special conformal transformations D - dilatation Bootstrap: SU(2|2)xSU(2|2) invariant S-matrix asymptotic Bethe ansatz spectrum of an infinite spin chain Ground state tr ZZZZ… breaks PSU(2,2|4) → P(SU(2|2)xSU(2|2)) Beisert’05

Beisert,Staudacher’05

STRINGS

String theory in AdS 5  S 5 Metsaev,Tseytlin’98 + constant RR 4-form flux Bena,Polchinski,Roiban’03 Finite 2d field theory ( ¯ -function=0) Sigma-model coupling constant: Classically integrable Classical limit is

AdS sigma-models as supercoset S 5 = SU(4)/SO(5) AdS 5 = SU(2,2)/SO(4,1) Super(AdS 5 xS 5 ) = PSU(2,2|4)/SO(5)xSO(4,1) AdS superspace: Z 4 grading:

Coset representative: g(σ) Currents: j = g -1 dg = j 0 + j 1 + j 2 + j 3 Action: Metsaev,Tseytlin’98 In flat space: Green,Schwarz’84 no kinetic term for fermions!

Degrees of freedom Bosons: 15 (dim. of SU(2,2)) + 15 (dim. of SU(4)) - 10 (dim. of SO(4,1)) - 10 (dim. of SO(5)) = 10 (5 in AdS in S 5 ) - 2 (reparameterizations) = 8 Fermions: - bifundamentals of su(2,2) x su(4) 4 x 4 x 2 = 32 real components : 2 kappa-symmetry : 2 (eqs. of motion are first order) = 8

Quantization fix light-cone gauge and quantize: action is VERY complicated perturbation theory for the spectrum, S-matrix,… study classical equations of motion (gauge unfixed), then guess quantize near classical string solutions Berenstein,Maldacena,Nastase’02 Callan,Lee,McLoughlin,Schwarz, Swanson,Wu’03 Frolov,Plefka,Zamaklar’06 Callan,Lee,McLoughlin,Schwarz,Swanson,Wu’03; Klose,McLoughlin,Roiban,Z.’in progress Kazakov,Marshakov,Minahan,Z.’04; Beisert,Kazakov,Sakai,Z.’05; Arutyunov,Frolov,Staudacher’04; Beisert,Staudacher’05 Frolov,Tseytlin’03-04; Schäfer-Nameki,Zamaklar,Z.’05; Beisert,Tseytlin’05; Hernandez,Lopez’06

Consistent truncation String on S 3 x R 1 :

Zero-curvature representation: Equations of motion: equivalent Zakharov,Mikhaikov’78 Gauge condition :

Classical string Bethe equation Kazakov,Marshakov,Minahan,Z.’04 Normalization: Momentum condition: Anomalous dimension:

Quantum string Bethe equations extra phase Beisert,Staudacher’05 Arutyunov,Frolov,Staudacher’04

Hernandez,Lopez’06 Algebraic structure is fixed by symmetries The Bethe equations are asymptotic: they describe infinitely long strings / spin chains and do not capture finite-size effects. Beisert’05 Schäfer-Nameki,Zamaklar,Z.’06

Interpolation from weak to strong coupling in the dressing phase How accurate is the asymptotic BA? (Probably up to e -f(λ)L ) Eventually want to know closed string/periodic chain spectrum need to understand finite-size effects Algebraic structure: Algebraic Bethe ansatz? Yangian symmetries? Baxter equation? Open problems Teschner’s talk