The Metabolism of Hydrogen Producing Bacteria Tõnu Malsub TTÜ, 2005.

Slides:



Advertisements
Similar presentations
Gastrointestinal Physiology
Advertisements

Organic Macromolecules
Enzymes, Metabolism & Nutrients. Metabolism Metabolism: all of the chemical reactions which occur in a cell Catabolism: large molecules are broken down.
SFGP 2011 Lille 29 nov. – 1er déc – Biohydrogène : Etat de l’Art - S. Hiligsmann La production de biohydrogène à partir de substrats carbohydratés.
Carbohydrates 1. Monosaccharides glucose, fructose, galactose 2. Disaccharides sucrose, maltose, lactose 3. Polysaccharides starch, glycogen, Agar.
Fermentations NADH must be oxidized to NAD + in order to oxidize glyceraldehyde-3-P In the absence of an electron transport chain pyruvate or a derivative.
Review Two.
Cyclic Structure of Fructose
Chapter 3 - Biochemistry
Hema Rughoonundun Research Week Outline of Presentation The MixAlco Process Introduction Sludge Materials and Methods Results Fermentation of sludge.
Microbial Metabolism Nestor T. Hilvano, M.D., M.P.H.
VEN 124 Section IV The Malolactic Fermentation. Lecture 12: The Biology of the Lactic Acid Bacteria.
Metabolism Part I: Fermentations Part II: Respiration.
Ethanol Production. Feedstock 1.Biomass 2.Starch.
Microbial Biotechnology LECTURE 10: Biotechnology; 3 Credit hours Atta-ur-Rahman School of Applied Biosciences (ASAB) National University of Sciences and.
Consider the amino acid alanine. An amino acid has both a weak acid and a weak base. What is the weak base What is the weak acid By lowering or raising.
Engineering of Biological Processes Lecture 1: Metabolic pathways Mark Riley, Associate Professor Department of Ag and Biosystems Engineering The University.
Lec # 7 Microbial Biotechnology
___________ is a substance that reduces the activity of an enzyme by entering the active site in place of the substrate whose structure it mimics. Competitive.
compounds that contain carbon are called______________ Organic.
compounds that contain carbon are called______________ Organic.
ERT Biofuel BIO ETHANOL What, Why, How, How much, ….
Biologically Important Molecules. There are four biologically important groups of molecules found in living organisms. They are:  Carbohydrate.
Fermentation and Respiration Embden-Meyerhof (glycolysis) Fermentation products Respiration and electron transport Electron-transport phosphorylation Citric.
Fermentation variables
Ag Biology PLAY. Organic Compounds/Macromolecules All contain carbon Carbon forms strong covalent bonds Carbon forms chains Carbon forms single, double,
Section one Answer 5 of the following 6 problems (3 marks each) 1.1) Explain the major reactions of the Sulfur cycle by pointing out: a) the environmental.
Carbohydrates Disaccharides Polysaccharides.
Regents Biology Carbohydrates. Regents Biology Carbohydrates Which foods contain carbohydrates?
Bioenergy-butanol.
Bioenergy-butanol.
Diversity of Metabolism in Procaryotes Eli Komalawati Bakteriologi BM-3204.
Organic Compounds: Biomolecules
Principles of anaerobic wastewater treatment and sludge treatment Jan Bartáček ICT Prague Department of Water Technology and Environmental Engineering.
Enterics Emphasize novel pyruvate enzymes
Pg. 55. Carbohydrates Organic compounds composed of carbon, hydrogen, and oxygen in a ratio of 1:2:1 Carbohydrates can exist as 1) monosaccharides (simple.
Carbo (carbon) hydrate (water) Sugar = saccharide Single = monosaccharide Pair = disaccharide Many = polysaccharide Glucose = a monosaccharide Outcomes.
Bacterial Fermentation
RESPIRATION.
Related Pathways Anaerobic Pathways (4.4) & Alternatives To Glucose (4.3)
Must And Wine Composition. General Background The weight % of the grape component parts of a cluster The general weight composition of the juice.
Carbon & Carbohydrates
4.12 Catabolic Diversity Microorganisms demonstrate a wide range of mechanisms for generating energy (Figure 4.22) – Fermentation – Aerobic respiration.
3.2 Molecules of Life 1.Carbohydrates 2.Proteins 3.Lipids 4.Nucleic Acids.
Objectives Describe the chemical composition and general structure of carbohydrates. Describe three classes of carbohydrates, how they are synthesized,
CHAPTER THREE: BIOCHEMISTRY Chapter 3/p1 CARBOHYDRATES There are three main types of carbohydrates: monosaccharides – these are simple sugars which cannot.
Bacterial metabolism Assist. Prof. Emrah Ruh NEU Faculty of Medicine

disaccharides + alcohol aldehyde hemi-acetal unstable + + H2O
Answers to the text questions.
Bacterial Fermentation
Microbial Metabolism.
Introduction to the Ingredients of Life
Carbohydrates Disaccharides Polysaccharides.
Biochemistry.
Biochemistry.
Role of yeast in chocolate production: The initial anaerobic, low ph and high sugar conditions of the pulp favor yeast activity.
Carbohydrates Disaccharides Polysaccharides.
Carbohydrates.
BIOCHEMISTRY © 2007 Paul Billiet ODWS.
disaccharides + alcohol aldehyde hemi-acetal unstable + + H2O
Carbon & Carbohydrates
Bacterial Fermentation
Carbohydrate: Model Lab
CARBOHYDRATES.
Carbohydrates
Chapter 19 section 1 The Chemistry of Life.
1.0 MOLECULES OF LIFE BY : MDM. NURFAZLINI ISMAIL (MDM FAZ)
Bacterial Fermentation
TOPIC 3.2 Carbohydrates, Lipids and Proteins
Presentation transcript:

The Metabolism of Hydrogen Producing Bacteria Tõnu Malsub TTÜ, 2005

Subjects Introduction Metabolic pathways Research in our facility –Appr. 20 min.

Biological hydrogen production processes

Yields and production rates Extreme Thermophiles –Yield 83 – 100% (of the maximal theoretical value of 4 mol hydrogen/mol glucose) –Production rate low due to low densities Clostridia –Max 4 mol/mol, normally 2 mol/mol –23 mmol/(L*h) Enterobacter –Below 2 mol/mol wild strains, mutants 3 mol/mol –58 mmol/(L*h) - mutant Co- and Mixed cultures –2,6 mol/mol –50 mmol/(L*h) Our consortia, Residual Sludge as only substrate –Hydrogen: 0,01 mmol/(L*h) –Methane: 0,19 mmol/(L*h)

Substrates Residual Sludge from WWTP Brewery waste Milk industry waste Agro-industrial waste Yeast industry waste Paper industry waste Animal manure

Substrates Polysaccharides –Amylose –Amylopectin –Cellulose –Xylan Disaccharides –Sucrose –Lactose –Maltose –Cellobiose Monosaccharides –Glycose –Galactose –Fructose –Xylose Amino Acids –Alanine

Energia C 6 H 12 O 6 → 3CO 2 + 3CH 4 1 mooli CH 4 põletamisel saab 889,6 kJ 3 x 889,6 = 2668,8 kJ C 6 H 12 O 6 + 2H 2 O → 2CH 3 COOH + 4H 2 + 2CO 2 1 mooli H 2 põletamisel saab 284 kJ 4 x 284 = 1136 kJ Metaanist saab ~2,35 korda rohkem energiat

Calculated for Higher Heating Value (HHV) 1 mole of glucose yields either 12 moles of H 2 (3.4 MJ/mole) or 4 moles of H 2 and 2 moles of CH 4 gives (2,9 MJ/mole) or 3 moles of CH 4 (2.7 MJ/mole) or 2 moles of C 2 H 5 OH (2,0 MJ/mole)

End-products that can be formed Organic acids –Lactic acid –Formic acid –Acetic acid –Propionic acid –Butyric acid (Valeric acid) –Succinic acid –Fumaric acid –Malic acid –Capronic acid –Etc. Alcohols –Ethanol –Propanol –Butanol –2,3-Butanediol –Etc. Rest –Aceta-aldehyde –Diacetyl –Acetoin –Acetone –Etc.

1Formic acidH-COOH 2Acetic acidCH3-COOH 3Oxalic acidHOOC-COOH 4Malonic acidHOOC-CH2-COOH 5Propionic acidCH3-CH2-COOH 6Pyruvic acidCH3-CO-COOH 7Lactic acidCH3-CH2O-COOH 8Butyric acidCH3-(CH2)2-COOH 9Isobutyric acid(CH3)2-CH-COOH 10Succinic acidHOOC-(CH2)2-COOH 11Fumaric acidHOOC-HC=CH-COOH 12Malic acidHOOC-CH2-CH2O-COOH 13Methylmalonic acid 14Oxalacetic acidHOOC-CO-CH2-COOH

15alpha-Ketoglutaric acid HOOC-CO-(CH2)2- COOH 16Valeric acidCH3-(CH2)3-COOH 17Isovaleric acid(CH3)2-CH-CH2-COOH 18Caproic acidCH3-(CH2)4-COOH 192-Methylvaleric acid 204-Methylvaleric acid 21Heptanoic acidCH3-(CH2)5-COOH 22phenylacetic acid 23p-hydroxyphenylacetic acid 24Caprylic acidCH3-(CH2)6-COOH 253-p-phenylpropionic acid 263-(p-hydroxyphenyl)propionic acid 27Palmic acidCH3-(CH2)14-COOH 28Stearic acidCH3-(CH2)16-COOH

nrReaction∆Go'Comments 1Propionate + 2H2O > Acetate + 3H2 + CO2 24Propionate- + 12H2O > 4Acetate- + 4HCO3- + 4H+ + 12H2∆Go' = +304,6 kJ/mol reaction 3Propionate- + H+ + 3H2O > Acetate- + HCO3- + 2H+ + 3H2∆Go' = +76,1 kJ/mol 4Butyrate- + 2H2O > 2Acetate- + 2H2 52Butyrate- + 4H2O > 4Acetate- + H+ + 4H2∆Go' = +96,2 kJ/mol reaction 6Valerate- + 2H2O > Propionate- + Acetate- + 2H2 7Palmitate + 14H2O > 8Acetate + 14H2 8Glucose > 2CO2 +2H2 + butyrate- + H+∆Go' = -255 kJ/mol glucose*Biology of Prokaryotes 9Glucose > 2CO2 +4H2 + 2acetate- + 2H+∆Go' = -206 kJ/mol glucose 103Glucose > 2Acetate- + 2CO2 + 4Propionate- + 6H+∆Go' = -934 kJ/2mol acetatePropionibacterium 11Glycerol > Propionate- + H+ + H2O∆Go' = -149 kJ/molPropionibacterium 123Glycerol > 2Propane-3-diol + Acetate- + formate- + 2H+ + H2O 13Ethanol + H2O > Acetate- + H+ + 2H2∆Go' = +9,6 kJ/mol ethanolClostridium kluyveri 14Ethanol + Acetate- > Butyrate- + H2O∆Go' = -39 kJ/mol ethanolClostridium kluyveri

152Ethanol + Acetate- > Caproate- + 2H2O∆Go' = -77 kJ/mol ethanolClostridium kluyveri 166Ethanol + 3Acetate- > 3butyrate- + Caproate- + H+ + 2H2 + 4H2O∆Go' = -183 kJ/mol H+Clostridium kluyveri 173Ethanol + 2Succinate2- > 2Butyrate- + 3Acetate- + H+ + H2O∆Go' = -165 kJ/mol H+Clostridium kluyveri 183Cystein + H2O > 3NH4+ + 3H2S + 2CO2 + 2Acetate- + Propionate-Clostridium propionicum 193Serine + 4H2O > 3NH4+ + 2CO2 +2Acetate- + Propionate-Clostridium propionicum 203Threonine + H2O > 3NH4+ + 2CO2 + 2Propionate- + Butyrate-Clostridium propionicum 21Threonine + H2O > (glycine + acetaaldehyde) > NH4+ + 2Acetate- + H+Clostridium pasteurianum 225Glutamate- + 6H2O +2H+ > 5NH4+ + 5CO2 + 6Acetate- + 2Butyrate- + H2∆Go' = -59 kJ/mol glutamateClostridium 234Formate- > CH4 + 3CO2 + 2H2OMethanosarcinales 24Acetate- + 4H2O > 2HCO3- + 4H2 + H+ 25Acetate- > CH4 + CO2Methanosarcinales 26CO2 > CH4Methanogens 274H2 + CO2 > CH4 + 2H2OMethanogens 28Pyruvate- + H2O > Acetate- + CO2 + H2 29Lactate- + H2O > Acetate- + CO2 + 2H2

Future plans Fermentations with Residual Sludge mixed with other wastes rich in carbohydrates Analyse microbial communities by using V3 region of 16S rDNA sequences using gel electrophoresis (DGGE) Determination chemical composition of residual sludge Fermentations on different temperatures 30 – 55 o C Monitor pH during fermentation Enrich fermentations with pure cultures and their combinations of E. coli, Enterobacter aerogenes, Clostridium acetobutylicum Explore the effect of extra nutrients (glucose, peptone)

Waste to Gold