The ALICE TPC C. Garabatos, GSI. Vienna 2004C. Garabatos, GSI Darmstadt2 TPC |  | < 0.9 (full length tracks) |  | < 0.9 (full length tracks) 845 < r.

Slides:



Advertisements
Similar presentations
GEM Chambers at BNL The detector from CERN, can be configured with up to 4 GEMs The detector for pad readout and drift studies, 2 GEM maximum.
Advertisements

1 500cm 83cm 248cm TPC DETECTOR 88us 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 1MIP = 4.8 fC = 3 x10 4 e Dynamic : 30 MIP S / N = 30:1 LATERAL.
TPC DETECTOR SEGMENTATION OF THE READOUT PLANE LATERAL VIEW OF THE TPC
Electronics for large LAr TPC’s F. Pietropaolo (ICARUS Collaboration) CRYODET Workshop LNGS, March 2006.
MWPC Commissioning: A Status Report What the MWPC’s do and how Data taking Jan-Feb 2000 Results from the Analysis.
Drift velocity Adding polyatomic molecules (e.g. CH4 or CO2) to noble gases reduces electron instantaneous velocity; this cools electrons to a region where.
Time Projection Chamber
Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
Workshop on Silicon Detector Systems, April at GSI Darmstadt 1 STAR silicon tracking detectors SVT and SSD.
HEP2005, Lisboa July 05 Roberto Campagnolo - CERN 1 HEP2005 International Europhysics Conference on High Energy Physics ( Lisboa-Portugal,
D. Peterson, “Status of the Cornell/Purdue Program” TPC R&D Mini Workshop, Orsay 12-January Status of the Cornell/Purdue Program: first events with.
Proportional Counters
UTA, Jan. 9-11, 2003M. Ronan LC-TPC R&D1 LC-TPC R&D GEM, MicroMEGAS and MWPC techniquesGEM, MicroMEGAS and MWPC techniques Preliminary studiesPreliminary.
Mauro Raggi Status report on the new charged hodoscope for P326 Mauro Raggi for the HODO working group Perugia – Firenze 07/09/2005.
Experiences with RPC Detectors in Iran and their Potential Applications Tarbiat Modares University Ahmad Moshaii A. Moshaii, IPM international school and.
Development and Performance of the High Voltage Distribution System for the ALICE TRD A. Markouizos, P. Mantzaridis, P. Mitseas, A. Petridis, S. Potirakis,
Progress with the TPC gas monitor Dariusz Antończyk Outline : Motivation Simulations Measurements Summary & Outlook.
Neutron Structure Functions and a Radial Time Projection Chamber The Structure of the Neutron The BoNuS Experiment at CLAS A New Proton Recoil Detector.
TRD R&D at GSI  Results from test beam 2004  Plans for test beam Feb. 06  Measurements with X-ray stand C. Garabatos, GSI.
LRT2004 Sudbury, December 2004Igor G. Irastorza, CEA Saclay NOSTOS: a spherical TPC to detect low energy neutrinos Igor G. Irastorza CEA/Saclay NOSTOS.
David Emschermann CBM Collaboration Meeting - GSI – 12/04/2010 TRD geometry in CBMroot and conclusions for detector module design David Emschermann Institut.
S.Vereschagin, Yu.Zanevsky, F.Levchanovskiy S.Chernenko, G.Cheremukhina, S.Zaporozhets, A.Averyanov R&D FOR TPC MPD/NICA READOUT ELECTRONICS Varna, 2013.
Czech Techn. Univ Prague, C. Lippmann (CERN) 1 The ALICE Time Projection Chamber... the World's largest Time Projection Chamber.
1 TPC Basics H. Wieman LBNL Oct. 18, Ann. Rev. Nucl. Part. Sci : 217.
108 Mar 2007L. Musa TPC Commissioning ALICE Technical Forum, CERN, 8 th March 2007 L. Musa Outline Pre-commissioning above ground (2006) Preparing for.
ALICE TPC, Schleching The ALICE TPC Team Project leader: Peter Braun-Munzinger, GSI Darmstadt Deputy project leader: Johanna Stachel, Heidelberg.
ALICE TPC Status, Meeting with LHCC referees ALICE TPC – Status Report Project leader: Peter Braun-Munzinger, GSI Darmstadt Deputy project leader:
The ALICE Forward Multiplicity Detector Kristján Gulbrandsen Niels Bohr Institute for the ALICE Collaboration.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
An Integrated Single Electron Readout System for the TESLA TPC Ton Boerkamp Alessandro Fornaini Wim Gotink Harry van der Graaf Dimitri John Joop Rovekamp.
Malte Hildebrandt, PSIMEG - Review Meeting / 1   e  Drift Chambers Charge Division Test Chamber Testsetup for Cosmics Chamber Construction.
Ionization Detectors Basic operation
FIRST TEST RESULTS FROM A MICROMEGAS LARGE TPC PROTOTYPE P. Colas (CEA Saclay), on behalf of the LC-TPC collaboration Micromegas with resistive anode:
High p T - workshop in Jyväskylä - P. Christiansen (Lund) /24 PID at high p T with the ALICE TPC The ALICE experiment –The ALICE TPC Motivation.
17th March 2005Bernardo Mota / CERN - PH TPC FEE Status and Planning CERN, 7th March 2005 Content  Introduction  Status and Milestones  PASA, ALTRO.
TPC in Heavy Ion Experiments Jørgen A. Lien, Høgskolen i Bergen and Universitetet i Bergen, Norway for the ALICE Collaboration. Outlook: Presenting some.
Como, October 15-19, 2001H.R. Schmidt, GSI Darmstadt 1 The Time Projection Chamber for the CERN- LHC Heavy-Ion Experiment ALICE ALICE Detector overview.
1 Luciano Musa, Gerd Trampitsch A General Purpose Charge Readout Chip for TPC Applications Munich, 19 October 2006 Luciano Musa Gerd Trampitsch.
TPC ExB distortion at LHC-ALICE experiment Yasuto Hori for the ALICE-TPC collaboration Center for Nuclear Study, University of Tokyo 1.
Towards a 1m 3 Glass RPC HCAL prototype with multi-threshold readout M. Vander Donckt for the CALICE - SDHCAL group.
The BoNuS Detector Concept Design Status Howard Fenker March 11, 2005.
The BoNuS Detector A Radial-Drift GEM TPC Howard Fenker TPC R&D Meeting LBL, March 24, 2005.
TPC/HBD R&D at BNL Craig Woody BNL Mini Workshop on PHENIX Upgrade Plans August 6, 2002.
TB Peter Glässel, Heidelberg1 TPC Status Report Project leader: Peter Braun-Munzinger, GSI Darmstadt Deputy project leader: Johanna Stachel, Heidelberg.
Technical FORUM, Peter Glässel, Heidelberg1 TPC Progress Project leader: Peter Braun-Munzinger, GSI Darmstadt Deputy project leader: Johanna Stachel,
1 A CLUster COUnting Drift Chamber for ILC …and… can we adapt this chamber to SuperB ? F.Grancagnolo, INFN – Lecce, Italy.
TPC electronics Status, Plans, Needs Marcus Larwill April
The BoNuS Detector: A Radial Time Projection Chamber for tracking Spectator Protons Howard Fenker, Jefferson Lab This work was partially supported by DOE.
1 19 th January 2009 M. Mager - L. Musa Charge Readout Chip Development & System Level Considerations.
D. Attié, P. Colas, E. Delagnes, M. Riallot M. Dixit, J.-P. Martin, S. Bhattacharya, S. Mukhopadhyay Linear Collider Power Distribution & Pulsing Workshop.
Development of a Single Ion Detector for Radiation Track Structure Studies F. Vasi, M. Casiraghi, R. Schulte, V. Bashkirov.
Readout Control Unit of the Time Projection Chamber in ALICE Presented by Jørgen Lien, Høgskolen i Bergen / Universitetet i Bergen / CERN Authors: Håvard.
Siena, May A.Tonazzo –Performance of ATLAS MDT chambers /1 Performance of BIL tracking chambers for the ATLAS muon spectrometer A.Baroncelli,
The ALICE TPC Readout Control Unit 10th Workshop on Electronics for LHC and future Experiments 13 – 17 September 2004, BOSTON, USA Carmen González Gutierrez.
1 16 July 2009, Kraków EPS-HEP 2009 Adam Matyja ALICE TPC design and performance Outline Components  ReadOut chambers  Drift voltage system  Gas system.
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Particle Identification of the ALICE TPC via dE/dx
TPC R3 B R3B – TPC Philippe Legou Krakow, February nd
FWD Meeting, Torino, June 16th, News from Cracow on the forward tracking J. Smyrski Institute of Physics UJ Tests of CARIOCA and LUMICAL preamplifiers.
The NA61 TPCs (1) Overview: Mechanics readout Position resolution
FEE for TPC MPD__NICA JINR
The GOOFIE detector as a Ternary Mixture Monitor
A General Purpose Charge Readout Chip for TPC Applications
Readiness of the TPC P. Colas What is left before final design?
The ALICE TPC C. Garabatos, GSI
BoNuS: Radial-Drift TPC using Curved GEMs
Power pulsing of AFTER in magnetic field
MINOS: a new vertex tracker for in-flight γ-ray spectroscopy
TPC Detector Control System
Presentation transcript:

The ALICE TPC C. Garabatos, GSI

Vienna 2004C. Garabatos, GSI Darmstadt2 TPC |  | < 0.9 (full length tracks) |  | < 0.9 (full length tracks) 845 < r < 2466 mm 845 < r < 2466 mm 2  2500 mm drift 2  2500 mm drift 88 m 3 88 m readout pads readout pads

Vienna 2004C. Garabatos, GSI Darmstadt3 Layout Inner and Outer Containment Vessels (150 mm, CO 2 ) Central electrode 100 kV Suspended field defining strips 400 V/cm Endplates housing 2  2  18 chambers

Vienna 2004C. Garabatos, GSI Darmstadt4 Challenging requirements for the gas High Multiplicities Momentum Resolution High Rate (200 Hz) dE/dx Resolution Occupancy 2 track res. Field Distortions Multiple Scattering Drift speed (max. HV) Signal/ Noise Argon Neon Hydrocarbons CO 2 CF 4 Ageing Flammability Neutrons Concentration: Gain: 2  10 4 ? ??? ? Small pads: 4  7.5 mm 2

Vienna 2004C. Garabatos, GSI Darmstadt5 Characteristics of the gas Ne-CO 2 [90-10] Non saturated drift velocity (as with Ar) : –strong dependence of V d on everything Very 'sensitive' Townsend coefficients: – strong dependence of Gain on everything (Everything: T, P, E, composition, purity,...) Poor stability: tendency to undergo self- sustained glow discharges due to minor imperfections in chamber construction  Is there any other quencher out there?

Vienna 2004C. Garabatos, GSI Darmstadt6 Yes: add Nitrogen 5% lower drift velocity or ~5% higher drift field

Vienna 2004C. Garabatos, GSI Darmstadt7 Drift velocity changes of no N 2 vs. N 2 Ne-CO 2 -N Temperature+0.37 % / K+0.34 % / K Pressure-0.15 % / mbar CO 2 concentration-7.6 % / %CO % / %CO 2 N 2 contamination-1 % / %N 2... and same diffusion coefficients, same electron absorption.

Vienna 2004C. Garabatos, GSI Darmstadt8 Gain changes of N 2 vs. no N Temperature+0.9 % / K? % / K Pressure-0.34 % / mbar? % / mbar CO 2 concentration+67, -20 % / %CO 2 +17, -14 % / %CO 2 N 2 contamination+34 % / %N % / %N 2

Vienna 2004C. Garabatos, GSI Darmstadt9 N 2 vs. no N 2 : Stability Instantaneous maximum gain Operating gain

Vienna 2004C. Garabatos, GSI Darmstadt10 Why N 2 helps with Neon: quenching (by ionisation) of Neon excited states in the avalanche

Vienna 2004C. Garabatos, GSI Darmstadt11 Chamber gain PCmonte simulations (S. Biagi) with Penning transfer, and measurements

Vienna 2004C. Garabatos, GSI Darmstadt12 Readout Chamber Production About 2/3 of the –not that conventional– wire chambers assembled and thoroughly tested Material ageing tests End of production/testing: Spring 2004

Vienna 2004C. Garabatos, GSI Darmstadt13 The Field Cage vessels with field-shaping strips Macrolon rods to support the strips to support the strips (à la NA49) to supply the HV to supply the HV and degrade it along to distribute the gas to distribute the gas (radially in/out) to distribute laser tracks to distribute laser tracks ( à la STAR) Suspended Al-mylar strips Suspended Al-mylar strips Stretched Al-mylar central Stretched Al-mylar centralelectrode Endplates to hold ROCs Endplates to hold ROCs Mechanical precision: Mechanical precision: ~200  m Ready for gas and volts: summer 2004

Vienna 2004C. Garabatos, GSI Darmstadt14 anode wire pad plane drift region 88  s L1: 5  s 200 Hz DETECTOR PADS gating grid cathodes 1 MIP = 4.8 fC S/N = 30 : 1 DYNAMIC = 30 MIP CSA SEMI-GAUSS. SHAPER GAIN = 12 mV / fC FWHM = 190 ns 10 BIT < 10 MHz BASELINE CORR. TAIL CANCELL. ZERO SUPPR. MULTI-EVENT MEMORY PASA ADC Digital Circuit (ALTRO) RAM 8 CHIPS x 16 CH / CHIP 8 CHIPS x 16 CH / CHIP CUSTOM IC (CMOS 0.35  m) CUSTOM IC (CMOS 0.25  m ) FEC (Front End Card) CHANNELS (CLOSE TO THE READOUT PLANE) FEC (Front End Card) CHANNELS (CLOSE TO THE READOUT PLANE) L2: < 100  s 200 Hz DDL (4096 CH / DDL) Power consumption: < 40 mW / channel Power consumption: < 40 mW / channel Front-end Electronics: Architecture

Vienna 2004C. Garabatos, GSI Darmstadt15 ALTRO: digital tail cancellation and baseline restoration Cosmic ray event in prototype FC

Vienna 2004C. Garabatos, GSI Darmstadt16 Electronics production status PASA chips (18000 produced), end of production: March 04 ALTRO (digital chip): chips produced by March 04 FEC 4800 boards (50 produced). Production finished Oct. 04. Automatic (robot) tests running: 1200 chips/day

Vienna 2004C. Garabatos, GSI Darmstadt17 Cooling: Temperature Stabilization and Homogeneity HV resistor rod: 4 x 8 W  water-cooled  removable  electrolysis, corrosion... all under control Very challenging: we aim at  T  0.1 K in the whole volume Thermal screens towards TRD (outer) and ITS (inner) Water-cooling of Readout Chamber Al bodies and pad planes Water cooling of FEE boards (total power 27 kW) All leakless (P < P atm ) cooling systems >400 temperature probes

Vienna 2004C. Garabatos, GSI Darmstadt18 Rays perpendicular to beam axis Effective ray  ~1mm 2 x 4 z-planes Strategic boundary crossings Additional signal from central electrode Laser System

Vienna 2004C. Garabatos, GSI Darmstadt19 Performance simulations > 97 % dN/dy = 8000 dE/dx resolution: 5.3 – 6.8 % depending on multiplicity  p/p Magnetic field 0.5 T  p/p (100 GeV) vs dN/dy: 16%  9% at dN/dy=2000

Vienna 2004C. Garabatos, GSI Darmstadt20 Space resolution from cosmic ray data Resolution in drift direction Resolution in bend direction

Vienna 2004C. Garabatos, GSI Darmstadt21 Summary A challenging, large TPC is thoroughly being constructed for ALICE High multiplicities, high occupancy, high gain  Optimised gas: Ne-CO 2 -N 2 [ ] (If you can't beat her, join her) Outlook: Dec Aug. 05: Full TPC assembly in surface 2006: TPC Installation underground 2007 START OF LHC

Vienna 2004C. Garabatos, GSI Darmstadt22 ALICE TPC Collaborators T. Alt, Y. Andres, T. Anticic, D. Antonczyk, H. Appelshäuser, J. Bächler, J. Bartke, J. Belikov, N. Bialas, U. Bonnes, R. Bramm, P. Braun-Munzinger, R. Campagnolo, P. Christakoglou, E. Connor, H. Daues, C. Engster, Y. Foka, F. Formenti, A. Förster, U. Frankenfeld, J.J. Gaardhøje, C. Garabatos, P. Glässel, C. Gregory, H.A. Gustafsson, J. Hehner, H. Helstrup, M. Hoch, M. Ivanov, R. Janik, K. Kadija, R. Keidel, W. Klempt, E. Kornaś, M. Kowalski, S. Lang, J. Lien, V. Lindenstruth, C. Loizides, L. Lucan, P. Malzacher, T. Meyer, D. Miskowiec, B. Mota, L. Musa, B.S. Nielsen, H. Oeschler, A. Oskarsson, L. Osterman, A. Petridis, M. Pikna, S. Popescu, S. Radomski, R. Renfordt, J.P. Revol, D. Röhrich, G. Rüschmann, K. Safarik, A. Sandoval, H.R. Schmidt, K.E. Schwarz, B. Sitar, H.K. Soltveit, J. Stachel, T.M. Steinbeck, H. Stelzer, E. Stenlund, R. Stock, P. Strmen, T. Susa, I. Szarka, H. Tilsner, G. Tsiledakis, K. Ullaland, M. Vassiliou, A. Vestbo, D. Vranic, J. Westergaard, A. Wiebalck, B. Windelband

Vienna 2004C. Garabatos, GSI Darmstadt23 Additional slides

Vienna 2004C. Garabatos, GSI Darmstadt24 Absorption cross-section of quenchers

Vienna 2004C. Garabatos, GSI Darmstadt25 Unprecedented gain?

Vienna 2004C. Garabatos, GSI Darmstadt26 TPC test facility measurements rms noise statistics, mean 700 e time bin pad # time bin Cosmics tracks

Vienna 2004C. Garabatos, GSI Darmstadt27 Field Cage: Central Electrode 6m wide mylar foil, glued from 3 sheets

Vienna 2004C. Garabatos, GSI Darmstadt28 SAMPLING CLOCK up to 20 MHz (5.7 MHz used) READOUT CLOCK 40 MHz 10- bit 20 MSPS 11- bit CA2 arithmetic 18- bit CA2 arithmetic 11- bit arithmetic 40-bit format 40-bit format 10-bit arithmetic ALICE TPC READOUT CHIP – Principle 16 ADCs and Digital Filter channels in one chip Algorithms and parameters reconfigurable

Vienna 2004C. Garabatos, GSI Darmstadt29 Field Cage Outer Containment Vessel

Vienna 2004C. Garabatos, GSI Darmstadt30 Readout Chamber Wire Geometry gate wires cathodes anodes pads

Vienna 2004C. Garabatos, GSI Darmstadt31 Pad Plane optimized pad sizes – 4 x 7.5 mm – 6 x 10 mm – 6 x 15 mm segmented: IROC and OROC total pads

Vienna 2004C. Garabatos, GSI Darmstadt32 Outer chamber test status

Vienna 2004C. Garabatos, GSI Darmstadt33 Tightness

Vienna 2004C. Garabatos, GSI Darmstadt34 Gain curve

Vienna 2004C. Garabatos, GSI Darmstadt35 Gain uniformity test

Vienna 2004C. Garabatos, GSI Darmstadt36 Long-term test

Vienna 2004C. Garabatos, GSI Darmstadt37 Ageing tests Tested many assembly materials: –Glues: Araldit 2012, 2013, dp190, 116 –Tedlar foil –Vacuum grease Lithelen Apiezon –Stesalit-like insulator

Vienna 2004C. Garabatos, GSI Darmstadt38 Rate of ageing in ALICE with P10

Vienna 2004C. Garabatos, GSI Darmstadt39 Ageing predictions with P10

Vienna 2004C. Garabatos, GSI Darmstadt40 Challenging requirements High multiplicities (dN/dy = 8000 originally) –High occupancy  Small pads (down to 4  7.5 mm 2 ) –E (and E  B) distortions in drift volume  No Argon Momentum resolution goal dp/p  1% – low multiple scattering gas  No Argon Event rate (up to 200 Hz) –100  s max. drift time but 100 kV max  Not much quencher allowed Good particle ID through dE/dx –signal/noise, uniformity  High enough gain

Vienna 2004C. Garabatos, GSI Darmstadt41 The gas: what is left Noble gas cannot be Argon –Positive ions too slow, Multiple scattering  Noble gas must be Neon Quencher cannot be a hydrocarbon –Flammability, Ageing, Slow proton production Quencher cannot be CF 4 (not well understood)  Quencher must be CO 2  Composition not different from [90-10] (V d =2.8 cm/  s) Low primary ionisation + small pads:  Unprecedented high gain: 2  10 4 (for TPCs)

Vienna 2004C. Garabatos, GSI Darmstadt42 Front End Card connection and cooling FEC in cooled Cu sandwich Flexible cables to PASA input Extra structure (Service Support Wheel) to hold weight of electronics

Vienna 2004C. Garabatos, GSI Darmstadt43 25 Front End Cards ALTRO PASA Power Connector Readout and Control Backplane (300 MB /sec) Readout Partition (3200 channels) FEE Components Assembly