 angular correlations LPC-Team : G. Ban, G. Darius, P. Delahaye, D. Durand, X. Flechard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, A. Mery, O. Naviliat,

Slides:



Advertisements
Similar presentations
Grupo de Física Nuclear Experimental IEMIEM CSIC Curso de Doctorado Estructura Nuclear M.J.G. Borge, IEM, CSIC 8 Junio 2007 Estudio experimental de la.
Advertisements

Hadron physics with GeV photons at SPring-8/LEPS II
Tests of symmetries with nuclei (in nuclear b decay)
Kurchatov Institute, Moscow
Coulomb excitation with radioactive ion beams
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
JYFLTRAP: Spectroscopy with multi-trap facility Facility Mass purified beams In-trap spectroscopy Future plans.
Present status of  -decay studies… …in nuclear mirror transitions Oscar Naviliat-Cuncic National Superconducting Cyclotron Laboratory and Department of.
High precision study of the  decay of 42 Ti  V ud matrix element and nuclear physics  Experimental and theoretical precisions  New cases: goals and.
Low energy radioactive beams Carmen Angulo, CRC Louvain-la-Neuve, Belgium FINUPHY meetingLouvain-la-Neuve, Belgium3-4 May 2004 Recent highlights on nuclear.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
Study of  - correlations with LPCTrap Dominique Durand LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen, France On behalf of the LPCTrap collaboration.
Teresa Kurtukian-Nieto Centre d’Etudes Nucléaires de Bordeaux Gradignan Precision half-life determination of the superallowed 0 + → 0 + β + -emmiters 42.
Precision measurement of the half-life and branching ratio of the T=1/2 mirror β decay of 37 K T. Kurtukian-Nieto, P. Ascher, B. Blank, G. Canchel, M.
 asymmetry parameter measurements in nuclear  -decay as a probe for non-Standard Model physics K.U.Leuven, Univ. Bonn, NPI Rez (Prague), ISOLDE CERN.
GT (  ) : Weak Process: Important roles in the Universe Combined Analysis of Mirror GT Transitions for the study of Proton-Rich Far-Stability Nuclei.
Title Gabriella Sciolla Massachusetts Institute of Technology Representing the BaBar Collaboration Beauty Assisi, June 20-24, 2005 Searching for.
From Nuclei to Neutrinos The Naming of the Denys Wilkinson Building 21 June 2002 Nick Jelley.
Alain Blondel Detectors UNO (400kton Water Cherenkov) Liquid Ar TPC (~100kton)
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
1 TCP06 Parksville 8/5/06 Electron capture branching ratios for the nuclear matrix elements in double-beta decay using TITAN ◆ Nuclear matrix elements.
Recoil Separator Techniques J.C. Blackmon, Physics Division, ORNL RMS - ORNL WF QT QD Q D Target FP ERNA - Bochum WF Target D QT FP DRS ORNL QD VF D VAMOS.
DF. Electron capture branching ratios for the odd-odd intermediate nuclei in  decay using TITAN Objectives: – experimental determination of nuclear.
Moriond QCD, Mar., 2007, S.Uehara 1 New Results on Two-Photon Physics from Belle S.Uehara (KEK) for the Belle Collaboration Rencontres de Moriond, QCD.
Direct Reactions with ORRUBA and GRETINA Steven D. Pain Oak Ridge National Laboratory GRETINA Workshop, ANL, February 2013.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
Polarized 11 Li beam at TRIUMF and its application for spectroscopic study of the daughter nucleus 11 Be 1. Physics motivation new  delayed decay spectroscopy.
Physics of 0 + → 0 +  transitions recent experimental efforts world data on 0 + → 0 + decay future studies Bertram Blank, CEN Bordeaux-GradignanISOLDE.
1 Beta Neutrino Correlation and T-Violation Experiment in Nuclear Beta Decay Rikkyo Univ. Jiro Murata Collaboration Rikkyo Univ. / RIKEN Asahi ANL / Titech.
Lawrence Livermore National Laboratory Nicholas Scielzo Lawrence Fellow Physics Division, Physical Sciences LLNL-PRES Lawrence Livermore National.
The REXTRAP Penning Trap Pierre Delahaye, CERN/ISOLDE Friedhelm Ames, Pierre Delahaye, Fredrik Wenander and the REXISOLDE collaboration TAS workshop, LPC.
{ Precision measurements of the beta neutrino correlation in the WI Electrostatic Ion Trap 3 December 2012 Sergey Vaintraub.
35 Ca decay beta-delayed 1- and 2-proton spokespersons: J. Giovinazzo (CENBG), O. Tengblab (CSIC) institutions: Centre d’Etudes Nucléaires (Bordeaux) –
Fundamental Interactions Physics & Instrumentation Conclusions Conveners: P. Mueller, J. Clark G. Savard, N. Scielzo.
RNB Cortina d’Ampezzo, July 3th – 7th 2006 Elisa Rapisarda Università degli studi di Catania E.Rapisarda for the Diproton collaboration 18 *
Spectroscopy studies by  decay -Proton-rich nuclei N~Z Deformation in the mass region A~75 Fundamental aspects of weak interaction, test of CVC -Neutron-rich.
Study of Electromagnetic Interactions of Light Ions in the Framework of the IHEP Ion Program at U70 Serguei Sadovsky, IHEP, Protvino EMIN-2009, Moscow,
 2-proton emission  experimental set-up  decay results  2p emission from 45 Fe  perspectives Jérôme Giovinazzo – CEN Bordeaux-Gradignan – France PROCON’03.
NS08 MSU, June 3rd – 6th 2008 Elisa Rapisarda Università degli studi di Catania E.Rapisarda 18 2.
Beta decay around 64 Cr GANIL, March 25 th V 63 V 64 V 60 V 61 V 63 Cr 64 Cr 65 Cr 61 Cr 62 Cr 60 Cr 64 Mn 65 Mn 66 Mn 65 Fe 67 Fe 1) 2 + in 64.
Trends in Heavy Ion Physics Research, Dubna, May Present and future physics possibilities at ISOLDE Karsten Riisager PH Department, CERN
ISOLDE Physics Report Magdalena Kowalska. Injector schedule since last meeting 2 September: confirmation of 2 more weeks with protons – until December.
REQUIREMENTS for Zero-Degree Ion Selection in TRANSFER Wilton Catford University of Surrey, UK & SHARC collabs.
CP violation in B decays: prospects for LHCb Werner Ruckstuhl, NIKHEF, 3 July 1998.
February 12-15,2003 PROCON 2003, Legnaro-Padova, Italy Jean Charles THOMAS University of Leuven / IKS, Belgium University of Bordeaux I / CENBG, France.
G. Bollen, INTC-NUPAC Meeting, CERN, Geneva, October 2005 Overview and Motivation Mass Measurements at ISOLDE … … and elsewhere Conclusions Mass Measurements.
Correlation measurements in nuclear  -decay O.Naviliat-Cuncic Laboratoire de Physique Corpusculaire de Caen and Université de Caen Basse-Normandie NuPAC.
Atom trapping and Recoil Ion Spectrometry for  -decay (and other BSM) studies H.W. Wilschut, KVI, Groningen Or why it is easier to measure things standing.
The TRI  P programme at KVI Tests of the Standard Model at low energy Hans Wilschut KVI – Groningen Low energy tests e.g. Time reversal violation precision.
INSTITUUT VOOR KERN- EN STRALINGSFYSICA 18-September-2002Weak Interaction Trap for CHarged particles1 Present status of WITCH experiment Valentin Kozlov.
Measurement of the super-allowed branching ratio of 22 Mg B. Blank, M. Aouadi, P. Ascher, M. Gerbaux, J. Giovinazzo, T. Goigoux, S. Grévy, T. Kurtukian.
TRIGA-SPEC: Developement platform for MATS and LaSpec at FAIR Double-beta transition Q-value measurements with TRIGA-TRAP NUSTAR Meeting Christian.
Shuya Ota: Japan Atomic Energy Agency, Rutgers University H. Makii, T. Ishii, K. Nishio, S. Mitsuoka, I. Nishinaka : Japan Atomic Energy Agency M. Matos,
 -capture measurements with a Recoil-Separator Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum Int. Workshop on Gross Properties.
Measurement of direct photon emission in K+ →π+π0γ ---Spectroscopic studies for various K+ decay channels --- S. Shimizu for the KEK-PS E470 collaboration.
The DESIR facility at SPIRAL2
Relativistic Kinematics for the Binding Energy of Nuclear Reactions
The DESIR facility at SPIRAL2
Beta Neutrino Correlation Measurement with Trapped Radioactive Ions
JYFL ION COOLER AND BUNCHER.
Precision Measurements of Very-Short Lived Nuclei
Progress on J-PARC hadron physics in 2016
Experimental determination of isospin mixing in nuclear states;
LPCTrap Experiment Status of Data Analysis
Probing the structure of weak interactions
Status and perspectives of the LNS-FRIBS facility
Probing correlations by use of two-nucleon removal
Presentation transcript:

 angular correlations LPC-Team : G. Ban, G. Darius, P. Delahaye, D. Durand, X. Flechard, M. Herbane, M. Labalme, E. Liénard, F. Mauger, A. Mery, O. Naviliat, D. Rodriguez

Allowed transitions, unpolarized nuclei a e – angular correlationFiertz interference J.D. Jackson, PR106(1957) & NP4(1957) a SM V – A theory |C i |= |C’ i | real Pure Fermi decay SMS_/T_Interaction a F (C V,C S )+1-1 Pure G-T decay a GT (C A,C T ) -1/3+1/3 New Physics beyond the Standard Model Deviations

Any observable linked to  will be sensitive to a Recoil ion momentum   p r (MeV/c) T e (MeV) 6 He 46 V  = 180°  = 0° a GT = -1/3 a F = +1

pure Fermi or G-T transitions a ~ a SM (1-  ) F : a SM = 1  = (|C S |²+|C S ’|²)/C V ² GT : a SM = -1/3  = (|C T |²+|C T ’|²)/C A ² Most precise measurements  C A M GT /C V M F x = 1/(1 +  ² ) 6 He 32 Ar

Present limits a GT = ± (1  ) C.H. Johnson, PR 132 (1963) 1149 Method : Analysis of the recoil energy spectrum a F = ± (1  ) Method : Analysis of the energy spread of the delayed protons E.G. Adelberger, P.R.L. 83 (1999)  C C A T 08.0  C C V S 6 He 6 Li +  - + e (0 + ) GT (1 + ) 32 Ar 32 Cl* +  + + e (O+) F (O+) 31 S + p (3.35 MeV)

SPIRAL BEAMSSPIRAL BEAMS

Pure GT transition 100% G.S. to G.S. T 1/2 = ms Q  = 3.51 MeV, T max = 1.4 keV High production rate : ions/s Goal : improvement of Johnson 1963 experiment build the kinematics event/event adapted environment : Paul trap  - recoil ion coincidences measurements 6 He

Paul trap no magnetic field ions « at rest » in vacuum ions well localized open geometry : high detection solid angle 12 34

Coincidences measurement back-to-back geometry  CP + Delay line anode Plastic + PSD Si Position and Energy Position and Time of flight Injection T x1 T x2 T y1 T y2  e-e- ion

Production SPIRAL: ions/s Efficiencies  RFQ cooler buncher : 20%  Paul trap : 10%  Efficiency of the detection setup : 2.8 ‰  Cycle efficiency: 3.3 ‰ (100ms – limit of 10 5 ions per cycle into the RFQ cooler buncher)  Radioactive decay: 86% One week of data taking 10 7 coincident events to get  a /a = 5 ‰ First LIRAT accepted by the PAC

8 He Pure GT transition, 84 % E  = keV,  = 8 fs T 1/2 = 119 ms Q  = 9.67 MeV, T max = 6.9 keV Production rate : ions/s Doppler shift of  energy linked to 8 Li recoil motion 18 Ne Pure F transition, 7.7 % E  = keV,  = 1.8 fs T 1/2 = 1672 ms Q  = 2.38 MeV, T max = 0.24 keV a F = 1.06 ± 0.19 (2  ) [ events] V. Egorov, NPA621(1997)745

Doppler shift measurement 2 = 2E  ( / M ion c) (0°,180°) = E  ( / M ion c) (eV) T e (MeV) 18 Ne a F =+1 a F =-1 V. Vorobel, EPJA16(2003)139 z

2 (eV) T e (MeV) a GT =+1/3 a GT =-1/3 18 Ne 8 He 8 He vs 18 Ne Q  = 9.67 MeV T max = 6.9 keV E  = keV  = 8 fs Q  = 2.38 MeV T max = 0.24 keV E  = keV  = 1.8 fs enhanced sensitivity !  = 8 fs = 33 Å  T ~ 400 eV in Carbon Paul trap Injection  e-e-  HPGe

32 Ar Pure F transition, 23 % T 1/2 = 98 ms E p = 3.35 MeV,  = 20 eV Q  = 5.1 MeV, T max = 0.52 keV Production rate : ions/s Goal : improvement of ISOLDE 1999 experiment measurement of p energy shift instead of broadening less sensitive to 32 Ar mass (~ factor 5)  - p coincidences measurements

p kinematic shift feasability tests performed in SIRa experiment accepted in GANIL, identification station (coll.: Argonne, Dubna, Louvain-la-Neuve, Leuven) unfortunately not still scheduled … Ar/s, clean beam - ions implanted in carbon foil - p &  detected by Si telescopes

32 Ar ISOLDE experiment results : some key stages…  performed in 1999 M exp ( 32 Ar) = ± 50 keV : a F ~ 1.00 ± 0.06 (1  ) M IMME ( 32 Ar) = ± 3.2 keV :a F = ± (1  ) E.G. Adelberger, PRL83(1999) welcome new measurement with alternative method !  end 2001 : precise ISOLTRAP of 32 Ar mass M exp ( 32 Ar) = ± 1.8 keV K. Blaum, PRL91(2003) Consistent with M IMME, lower uncertainty …! real new challenge ….  a few 10 5 events in p peak need to get  a = (1  )  clean beam with good emittance is needed  experiment could be LIRAT with RFQ in continuous mode

Connected experiments – spectroscopic information  32 Ar : precise mass measurement  C A M GT /C V M F    (ft) -1 & t = T 1/2 (1 +  EC )/BR a mixed = ± (3.6  from SM) N.D. Scielzo, PhD Thesis, Berkeley (2003)  21 Na : precise branching ratio measurement precise a …. … or precise aspectroscopic information  33 Ar : mixed transition B(GT)/B(F) (Shell-model : 0.055…)a mixed = ± 0.004B(GT)/B(F) = ± A. Garcia, hyp.Int.129(2000) (not more valid …!)

Conclusions   angular correlations measurement : still an up-to-date subject  LIRAT-SPIRAL : place of high exotic beam production & some exotic noble gazes are the present best candidates for  angular correlations measurements constraints on exotic weak couplings could be LIRAT  Experiments sometimes linked to reliable spectroscopic data