1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for.

Slides:



Advertisements
Similar presentations
The CBM experiment - exploring the QCD phase diagram at high net baryon densities - Claudia Höhne, GSI Darmstadt CBM collaboration The CBM experiment physics.
Advertisements

The Compressed Baryonic Matter (CBM) experiment at FAIR
The Compressed Baryonic Matter Experiment at FAIR Outline:  Physics case  Detector requirements  Feasibility studies  Detector R&D  Outlook Peter.
Silicon Tracker for CBM Walter F.J. Müller, GSI, Darmstadt for the CBM Collaboration Topical Workshop: Advanced Instrumentation for Future Accelerator.
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Open Charm Everard CORDIER (Heidelberg) Grako meeting HD, April 28, 2006Everard Cordier.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
Johann M. Heuser, GSI Darmstadt, Germany for the CBM Collaboration
INTRODUCTION One of the major experimental challenges of the Compressed Baryonic Matter (CBM) experiment is the measurement of the D-meson hadronic decay.
1 J.M. Heuser et al. CBM Silicon Tracker Requirements for the Silicon Tracking System of CBM Johann M. Heuser, M. Deveaux (GSI) C. Müntz, J. Stroth (University.
J.M. Heuser — CBM Silicon Tracker 1 Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 15 October 2008 CBMCBM Review of the first in-beam.
1 J.M. Heuser − Status of the Silicon Tracking System Johann M. Heuser, GSI Darmstadt CBM Collaboration Meeting JINR Dubna, 16 October 2008 CBMCBM Status.
Development of a RICH detector for electron identification in CBM Claudia Höhne, GSI Darmstadt CBM collaboration Sixth Workshop on Ring Imaging Cherenkov.
CBM at FAIR Walter F.J. Müller, GSI 5 th BMBF-JINR Workshop, January 2005.
Dec Heavy-ion Meeting ( 홍병식 ) 1 Introduction to CBM Contents - FAIR Project at GSI - CBM at FAIR - Discussion.
The CBM FAIR Volker Friese Gesellschaft für Schwerionenforschung Darmstadt  HI physics at intermediate beam energies  CBM detector concept.
Peter Senger Kolkata Feb. 05 Outline:  Facility of Antiproton and Ion Research  Physics motivation for CBM  Feasibility studies  Experiment layout.
1 Compressed Baryonic Matter at FAIR:JINR participation Hadron Structure 15, 29 th June- 3 th July, 2015 P. Kurilkin on behalf of CBM JINR group VBLHEP,
Status of the CBM experiment V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany for the CBM Collaboration.
Peter Senger The Compressed Baryonic Matter Experiment at FAIR Critical Point and the Onset of Deconfinement, Florence, July Outline:  The Facility.
Ooo Performance simulation studies of a realistic model of the CBM Silicon Tracking System Silicon Tracking for CBM Reconstructed URQMD event: central.
The CBM experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment feasibility studies dileptons:
CBM at FAIR Walter F.J. Müller, GSI, Darmstadt for the CBM collaboration 5 th International Conference on Physics and Astrophysics of Quark Gluon Plasma,
Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Measurements of dileptons with the CBM-Experiment at FAIR Claudia Höhne, University Giessen CBM collaboration.
Johann M. Heuser GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany 3 rd International Conference on New Frontiers in Physics, Kolymbari,
Di-lepton spectroscopy in CBM Claudia Höhne, GSI Darmstadt CBM collaboration.
ICPAGQP 2005, Kolkata Probing dense baryonic matter with time-like photons Dilepton spectroscopy from 1 to 40 AGeV at GSI and FAIR Joachim Stroth Univ.
1 J.M. Heuser – CBM Silicon Tracking System Roadmap for the development of STS module demonstrators Concept Common interfaces/dimensions Some technical.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
1 J.M. Heuser − Silicon detector systems for CBM Silicon detector systems for CBM Johann M. Heuser, GSI CBM meeting, University of Jammu, 14 February 2008.
News on microstrip detector R&D —Quality assurance tests— Anton Lymanets, Johann Heuser 12 th CBM collaboration meeting Dubna, October
1 THE MUON DETECTION SYSTEM FOR THE CBM EXPERIMENT AT FAIR/GSI A. Kiseleva Helmholtz International Summer School Dense Matter In Heavy Ion Collisions and.
1 JINR Contribution to the CBM experiment Report at the 5 th Workshop on the Scientific Cooperation Between German Research Centers and JINR, Dubna, January.
Schwerionen- und Hadronenphysik an und Claudia Höhne, GSI Darmstadt KHuK Jahrestagung, 25./ , GSI Darmstadt Einleitung GSIFOPI & HADES FAIRHADES.
The Compressed Baryonic Matter Experiment at the Future Facility for Antiproton and Ion Research (FAIR) Outline:  FAIR: future center for nuclear and.
Peter Senger (GSI) The Compressed Baryonic Matter (CBM) experiment at FAIR FAIR Meeting Kiev, March Outline:  Scientific mission  Experimental.
Results from first beam tests for the development of a RICH detector for CBM J. Eschke 1*, C. Höhne 1 for the CBM collaboration 1 GSI, Darmstadt, Germany.
CBM The future of relativistiv heavy-ion physics at GSI V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany Tracing the.
CBM Relativistiv heavy-ion physics at FAIR V. Friese Gesellschaft für Schwerionenforschung Darmstadt, Germany The QCD phase diagram : From.
The Compressed Baryonic Matter experiment at the future accelerator facility in Darmstadt Claudia Höhne GSI Darmstadt, Germany.
Physics investigations with CBM – and the importance of tracking – Claudia Höhne, Universität Gießen.
Performance simulations with a realistic model of the CBM Silicon Tracking System Silicon tracking for CBM Number of integration components Ladders106.
1 J.M. Heuser − STS Development Microstrip detector GSI-CIS Johann M. Heuser, GSI Li Long, CIS CBM Collaboration Meeting, GSI, Update on.
– Self-Triggered Front- End Electronics and Challenges for Data Acquisition and Event Selection CBM  Study of Super-Dense Baryonic Matter with.
Physics with CBM Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables.
CBM at FAIR Outline:  CBM Physics  Feasibility studies  Detector R&D  Planning, costs, manpower,...
1 Physics of High Baryon Densities - The CBM experiment at FAIR Subhasis Chattopadhyay Variable Energy Cyclotron Centre, Kolkata for the CBM collaboration.
The Compressed Baryonic Matter Experiment at FAIR Outline:  The Facility for Antiproton and Ion Research (FAIR)  Compressed Baryonic Matter: the physics.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Possible structures of a neutron star Exploring dense nuclear matter The Compressed Baryonic Matter Experiment atom: m nucleus:
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline:  Probing dense baryonic matter  Experimental observables.
20/12/2011Christina Anna Dritsa1 Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies.
The Compressed Baryonic Matter experiment at FAIR Claudia Höhne, GSI Darmstadt CBM collaboration Outline motivation, physics case observables experiment.
Open Charm measurement with the CBM detector at FAIR 1 Iouri Vassiliev for the CBM Collaboration STS RICH TRD TOF ECAL PSD MUCH FAIR construction site.
ADC values Number of hits Silicon detectors1196  6.2 × 6.2 cm  4.2 × 6.2 cm  2.2 × 6.2 cm 2 52 sectors/modules896 ladders~100 r/o channels1.835.
The Silicon Tracking System of the CBM experiment FAIR 2014, Worms, October 2014 requirements and detector concept system performance prototype.
QA Tests Tests for each sensor Tests for each strip Tests for structures Process stability tests Irradiation tests Bonding & Module assembly Si detectors1272.
Physics analysis with KFParticle Iouri Vassiliev CBM Collaboration.
TOF ECAL TRD Iouri Vassiliev , I. Kisel and M. Zyzak
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
1 J.M. Heuser − STS R&D Johann M. Heuser, GSI CBM-STS Project Leader Meeting on Experiment with external HI beams of the Nuclotron-M JINR, 4 February 2011.
Experiment CBM – research program Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.
Multi-Strange Hyperons Triggering at SIS 100
M. Deveaux, S. Amar-Youcef, C. Dritsa, J. Heuser, I. Fröhlich, C
Open Charm with the CBM Experiment
CBM Relativistiv heavy-ion physics at FAIR
A heavy-ion experiment at the future facility at GSI
I. Vassiliev, V. Akishina, I.Kisel and
Pradeep Ghosh for the CBM Collaboration Goethe-Universität, Frankfurt
Presentation transcript:

1 J.M. Heuser − CBM Silicon Tracking System Development of a Silicon Tracking System for the CBM Experiment at FAIR Johann M. Heuser, GSI Darmstadt for the CBM Collaboration DPG-Tagung "Hadronen und Kerne", Gießen, 13. März 2007 The Compressed Baryonic Matter Experiment The Silicon Tracking System Performance Studies and Detector R&D

2 J.M. Heuser − CBM Silicon Tracking System GSI today FAIR 2015 CBM The Compressed Baryonic Matter Experiment: What are the properties of dense nuclear matter? SIS-300 CBM - expected in extreme objects: cores of neutron stars, certain supernovae Laboratory: collide nuclei of heavy elements PhysicsObservables In-medium modifications of hadrons: Onset of chiral symmetry restoration , ,   e + e - (μ + μ - ) open charm: D 0, D ± Indications for deconfinement: Anomalous charmonium suppression ? D 0, D ±, J/   e + e - (μ + μ - ) Strangeness in matter: Enhanced strangeness production K, , , ,  Critical point: Event-by-event fluctuations , K Challenge Precise track + momentum measurement Vertex reconstruction Particle identification Nuclear collisions Au beam, 25 AGeV, on Au target up to 10 MHz interaction rate up to 1000 particles/event rare probes phase diagram QCD SN 1054

3 J.M. Heuser − CBM Silicon Tracking System Concept of the CBM Experiment Electron-hadron setup Muon-(hadron) setup MVD + STS RICH TRDs ECAL TOF MVD + STS TRDs MUCH ECAL TOF

4 J.M. Heuser − CBM Silicon Tracking System Silicon Detector System MVD (Micro Vertex Detector) + STS (Silicon Tracking System) 1 T field

5 J.M. Heuser − CBM Silicon Tracking System Microstrip Tracking Stations material budget momentum resolution tracking efficiency - strip lengths - stereo angle - station segmentation strip vs. pixel stations r/o electronics sensors station 6 Microstrip detector module: Layout studies: 50 µm strip pitch 15º stereo angle ~20 – 50 cm double-sided sensors

6 J.M. Heuser − CBM Silicon Tracking System Challenge: Hit densities Detector occupancy 6 tracking stations ~ 5000 physical hits ~ 5000 physical hits per central event combinatorial hit challenge: ~ hits ~ hits 2 pixel, 4 strip stations: ~ hits 6 strip stations: ~ hits fraction of fired strips x [cm] y [cm] real hit strip hit station 5 station 5 z = 50cm

7 J.M. Heuser − CBM Silicon Tracking System STS Performance: Tracking Track reconstruction "Cellular Automaton + Kalman Filter" "CBMRoot " Momentum resolution ~ 1% 697 rec. tracks ~ 1% ghost tracks central collision Au beam, 25 AGeV, on Au target efficiency [%] momentum [GeV/c] pixels + strips: ± 0.09 only strips: ± 0.12 pixels +strips: ± 0.14 only strips: ± 0.15 Tracking efficiency primary tracksall rec. tracks

8 J.M. Heuser − CBM Silicon Tracking System STS+MVD Performance: Vertexing Measurement of the D 0 signalVertex resolution S/B 2  = 4.4 Eff = 3.25% D 0 → K -  + (c  = 124  m) = 4∙ MVD stations at z= cm ~54  m sec. vertex resolution Proton identification with TOF 1.6 ×10 7 central Au+Au collisions, 25 AGeV primary secondary

9 J.M. Heuser − CBM Silicon Tracking System Towards a Microstrip Detector Module Development goal & challenge: sensors, single or chained readout thin flex multi-line fine-pitch cables fast, self-triggered readout: - outside of STS aperture - capacity-matched, low noise low-mass mechanical support conceptional CAD study as a building block of the tracking stations  focus on "low mass" + fast "self-triggered" readout

10 J.M. Heuser − CBM Silicon Tracking System Microstrip Detector Development Two streams of activities: double-sided sensors, different technologies 1) Moscow State University, SiLab: ~300 µm, AC coupling, poly-silicon biasing, p-stops, 15 deg stereo angle connectivity: top/bottom + sides goal: study radiation tolerance 2) GSI together with CIS, Erfurt: ~300 µm, AC coupling, punch-through biasing, p-spray, 15 deg stereo angle, double-metal interconnections on p side goal: connectivity study for module construction; r/o at top/bottom edge n side: "vertical" strips p side: "stereo" strips p side: "stereo" strips with "double metal" blue: double metal connections of strips in regions I to III n side: "vertical" strips III r/o direction I II

11 J.M. Heuser − CBM Silicon Tracking System 256 x 256 strips 80 µm pitch 90 deg stereo angle 256 x 256 strips 50 µm pitch 90 deg stereo angle 1024 x 1024 strips 50 µm pitch 15 deg stereo angle 4" wafer, 280 µm thick Microstrip Detector R&D with CiS, Erfurt Sensor design: finished 12/2006. Delivery in Summer 2007: batch of ~ 20+ wafers. Plenty of sensors for a variety of tests of first sensor and detector concepts. sensor p side r/o chip sensor n side test systems sensor r/o chip interconnects concepts

12 J.M. Heuser − CBM Silicon Tracking System Microstrip r/o chip "N-XYTER" N-XYTER chip produced 2006; DETNI Consor- tium − GSI test system under construction micro- strip sensor N-XYTER chip Data Driven Front-End: Asynchronous Channel Trigger 128 channels 50.7 µm pitch dual polarity 30 ns peaking time ~1.4 ns jitter thresholds: > 2700 e count rates: ~160 kHz/strip token ring r/o scheme power: ~ 30 mW/ch (high!!!) 0.35  m CMOS ASIC evaluation + first sensor tests Next steps: N-XYTER r/o hybrid for full-size sensors Compatible with CBM DAQ board prototypes. Lab and beam tests! Future: new chip: CBM-XYTER

13 J.M. Heuser − CBM Silicon Tracking System Summary CBM: Baseline experiment at FAIR. Running in Very interesting physics program on the QCD phase diagram: "Properties of dense nuclear matter" Challenge: CBM is a 2nd generation, specialized experiment. Must measure: rare probes and fluctuations, correlations  high interaction rates, high track multiplicities Requires: High-performance Silicon Tracking System  efficient tracking, high momentum resolution, sec. vertexing Simulation studies: STS concept works. Detector R&D: Has started. Demonstrate technical feasibility.  Microstrip  FEE, DAQ  Mechanics, cables etc. sensors components for module prototyping Goal: Starting with small test systems, build and characterize a prototype tracking system in the next years.

14 J.M. Heuser − CBM Silicon Tracking System CBM Collaboration Russia: IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg China: CCNU Wuhan USTC Hefei Croatia: RBI, Zagreb Portugal: LIP Coimbra Romania: NIPNE Bucharest Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Nucl. Phys. Inst. Krakow LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Ukraine: Shevchenko Univ., Kiev Cyprus: Nikosia Univ. Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Czech Republic: CAS, Rez Techn. Univ. Prague France: IPHC Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Univ. Kaiserslautern Hungaria: KFKI Budapest Eötvös Univ. Budapest India: VECC Kolkata SAHA Kolkata IOP Bhubaneswar Univ. Chandigarh Univ. Varanasi IlT Kharagpur Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna 46 institutions > 400 members Strasbourg, September 2006 CBM related talks: C. Höhne HK 31.4 M. Klein-Bösing HK 16.8T. Galatyuk HK 19.3 A. Kiseleva HK 19.4J. Heuser HK 22.2 K. Solvag HK 34.8E. Cordier HK 47.4 S. Gorbunov HK 53.1C. Steinle HK 53.4 Poster on CBM Micro Vertex Detector: C. Müntz HK 49.23

15 J.M. Heuser − CBM Silicon Tracking System Backup slides

16 J.M. Heuser − CBM Silicon Tracking System Stereo angle [deg] y-resolution [µm] eff. (primary tracks, %) efficiency (all tracks, %) momentum resolution,% ghost track rate, % STS Layout Studies material budget momentum resolution tracking efficiency - strip lengths - stereo angle - stereo angle - station segmentation strip vs. pixel stations r/o electronics sensors Microstrip detector module: Layout studies: 50 µm strip pitch 15º stereo angle ~20 – 50 cm double-sided sensors

17 J.M. Heuser − CBM Silicon Tracking System CBM01 design: focus on interconnectivity Layout of the bond pad pattern and the double-metal line connections of the corner strips. I II III r/o direction

18 J.M. Heuser − CBM Silicon Tracking System STS station fluence per min. bias event [particles/cm 2 ] fluence per CBM year [particles/cm 2 ] z=100 cm~ 0.25~ 1.25 × z= 30 cm~ 2.5~ 1.25 × [z= 10 cm][~ 25][~ 1.25 × ] The detector system would have to be operated for typically 3-4 years with one set of sensors. Interaction rate: 10 7 /s Effective CBM run year: 2 months at full operation 5 × 10 6 s Particle fluencies in the most exposed parts of the tracking stations: URQMD generator, Au+Au 25 GeV/nucleon, primary particles. More refined simulations are in progress that take into account also secondary particle production. STS requirement on radiation hardness radiation tolerance: > 5 × MeV n equiv. × 10 7 /s × 5×10 6 s

19 J.M. Heuser − CBM Silicon Tracking System Primary particle rates in STS stations for central Au+Au collisions at 25 GeV/nucleon. Factor central  min. bias: × ~ 1/4 Particle energy spectrum for min. bias Au+Au collisions at 25 GeV/nucleon.