2.1 Proprietary to General Electric Company SDM-V8 (11/30/2000) Module 2 Sigma Calculation Basics It is important that the student understand the fundamental.

Slides:



Advertisements
Similar presentations
Quantitative Capability Assessment
Advertisements

1 Manufacturing Process A sequence of activities that is intended to achieve a result (Juran). Quality of Manufacturing Process depends on Entry Criteria.
Chapter 9: The Normal Distribution
Process Capability ASQ Section 1404
Chapter 9 Capability and Rolled Throughput Yield
SIX SIGMA QUALITY METRICS vs TAGUCHI LOSS FUNCTION Luis Arimany de Pablos, Ph.D.
2-5 : Normal Distribution
8-1 Is Process Capable ? The Quality Improvement Model Use SPC to Maintain Current Process Collect & Interpret Data Select Measures Define Process Is Process.
1 © The McGraw-Hill Companies, Inc., 2004 Technical Note 7 Process Capability and Statistical Quality Control.
The Quality Improvement Model
Roberto lopez LSSMBB DMAIC project template.
Quality Management, Process Capability and Six Sigma MGMT 311
DFSS Basic Staistics EAB/JN Stefan Andresen Basic Statistics.
PSY 307 – Statistics for the Behavioral Sciences Chapter 8 – The Normal Curve, Sample vs Population, and Probability.
Process Capability What it is
INT 506/706: Total Quality Management Lec #6, Process Capability.
Six Sigma is Two Things A Highly Capable Process – Long Term Statistical Defect Rate Prediction of 3.4 Defects Per Million or Less A Structured Process.
Chapter 6 – Part 4 Process Capability.
1 Our Process ElevationArm Tower FrontBack. 2 Operational Definition Need two things: –a method of measurement or test –a set of criteria for judgment.
MBSW 2012 Midwest Biopharmaceutical Statistics Workshop May 21-23, 2012 Presenter: Krista Witkowski Co-author: Julia O’Neill Merck & Co., Inc. Capability.
Development of Six Sigma
© 2002 Systex Services Capability and Improvement - from Cpk to Six Sigma.
Statistical Quality Control/Statistical Process Control
Statistical Applications in Quality and Productivity Management Sections 1 – 8. Skip 5.
Process Capability Process capability For Variables
Normal Distribution Links Standard Deviation The Normal Distribution Finding a Probability Standard Normal Distribution Inverse Normal Distribution.
Brion Hurley Lean Six Sigma Black Belt Rockwell Collins.
Explain Six Sigma Simply (Football story from SSDSI) Six Sigma Simplicity.
 Review homework Problems: Chapter 5 - 2, 8, 18, 19 and control chart handout  Process capability  Other variable control charts  Week 11 Assignment.
Process Capability and SPC
Topics Covered Discrete probability distributions –The Uniform Distribution –The Binomial Distribution –The Poisson Distribution Each is appropriately.
Chapter Six Normal Curves and Sampling Probability Distributions.
Six sigma very basic concise explanation and use of it Skorkovský KPH_ESF_MU BRNO_Czech Republic.
Points in Distributions n Up to now describing distributions n Comparing scores from different distributions l Need to make equivalent comparisons l z.
 Review homework Problems: Chapter 5 - 2, 8, 18, 19 and control chart handout  Process capability  Other variable control charts  Week 11 Assignment.
Module 13: Normal Distributions This module focuses on the normal distribution and how to use it. Reviewed 05 May 05/ MODULE 13.
Chapter 23 Process Capability. Objectives Define, select, and calculate process capability. Define, select, and calculate process performance.
Chapter 6 The Normal Distribution. 2 Chapter 6 The Normal Distribution Major Points Distributions and area Distributions and area The normal distribution.
Mean Point of Interest, x Z Score σ σ σ σ σ σ The Z Table Estimate Area “A” Area “B” Background on the Z Estimate Using the Z score, the.
Six Sigma Measurement. Yield and Defects LSL Target Value USL Probability of Defects Probability of Yield.
Customer Expectations Standards Certifications Inspections Packaging Others.
1 Six Sigma : Statistical View Dedy Sugiarto. 2 What is Variation? Less Variation = Higher Quality.
Normal Distribution Links The Normal Distribution Finding a Probability Standard Normal Distribution Inverse Normal Distribution.
Statistical Quality Control
Six Sigma Training Dr. Robert O. Neidigh Dr. Robert Setaputra.
Six Sigma. What is it? A highly disciplined process that helps focus on developing and delivering near-perfect products and services.
The Abnormal Distribution
Process Capability Study (Cpk) Business Excellence DRAFT October 5, 2007 BE-TL3-002-DRAFT-Cpk.
Problem 21 Since the capability index is greater than 1, the process is capable.
Chapter 36 Quality Engineering (Part 1) (Review) EIN 3390 Manufacturing Processes Fall, 2010.
Portland, OR Process Capability Mythology and Perspective -- the Correct and Incorrect Use of C.
1 © 2006 The McGraw-Hill Companies, Inc., All Rights Reserved Technical Note 8 Process Capability and Statistical Quality Control.
A data-driven improvement technique A science An organizational phenomenon A total quality improvement philosophy A management philosophy A problem- solving.
Basic Statistics.
Process Capability What it is
Six Sigma.
36.1 Introduction Objective of Quality Engineering:
McGraw-Hill/Irwin ©2009 The McGraw-Hill Companies, All Rights Reserved
TM 720: Statistical Process Control
MEASUREMENT PHASE FORMULAS AND SYMBOLS
Six Sigma. Six Sigma What is Six Sigma? Philosophy: We should work smarter, not harder. Business strategy: We gain a competitive edges in Quality,
Normal Distribution Links Standard Deviation The Normal Distribution
Help for Chapter 5, SHW Problem 7
Step M2 – Variable Process Capability
DSQR Training Process Capability & Performance
SIX SIGMA AND CALCULATION OF PROCESS CAPABILITY INDICES: SOME RECOMMENDATIONS P.B. Dhanish Department of Mechanical Engineering
Process Capability Process capability For Variables
Process Capability.
Process Capability What it is
The Z Table Estimate Area “A” Area “B” Point of Interest, x Mean
Presentation transcript:

2.1 Proprietary to General Electric Company SDM-V8 (11/30/2000) Module 2 Sigma Calculation Basics It is important that the student understand the fundamental calculations of defect probability which will be used throughout the course and the different ways these may be represented and expressed. After completing this module, you will be able to: Use the normal distribution table to determine probabilities of defects Apply appropriate 1-tailed or 2-tailed defect calculations Apply the concept of process shift to defect probability predictions Convert between short-term and long-term data Perform calculations of DPU, dpmo, Z ST, Z LT 66six sigma sigma

2.2 Proprietary to General Electric Company SDM-V8 (11/30/2000) Standard Normal Distribution Original Distribution Apply Transformation Standard Normal Distribution x -   Z=  Z Z = + 2 is two Std. Deviations above the mean Z= is 1/2 Std. Deviation below the mean What is Z for a point that is 8 Std. Deviations above the mean? Area under Curve =1 Examples: X ZoZo Z Area under curve is probability, Z>Z o What is Probability that Z > 0.97? A normalized frequency distribution can be used to determine probability. Probability

2.3 Proprietary to General Electric Company SDM-V8 (11/30/2000) The Standard Normal Distribution Allows You To Use Tables Instead of Integration Normal Distribution Z E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E-01 Z What is Probability that Z > 0.97? Area to the right of Z 0 = 1.66x10 -1 Probability = or 16.6%

2.4 Proprietary to General Electric Company SDM-V8 (11/30/2000) Z-Calculation and Defect Probability   11 11 Some Chance of Failure 33 Target 66 The higher the number (Z) in front of the sigma symbol the lower the chance of producing a defect USL 11 11 Much Less Chance of Failure

2.5 Proprietary to General Electric Company SDM-V8 (11/30/2000) P(d) LSL from Z table P(d) USL from Z table P(d) Total = P(d) USL + P(d) LSL P(d) Total Z lt from Z table Z.st = Z.lt USLLSL Long -Term Z-Calculation (Two - Sided Distribution)

2.6 Proprietary to General Electric Company SDM-V8 (11/30/2000) Short Term vs. Long Term LSLUSLT Time 1 Time 2 Time 3 Time 4 Inherent Capability of the Process Sustained Capability of the Process... also called “short-term capability”... reflects ‘within group’ variation... also called “long-term capability”... reflects ‘total process’ variation “Sigma” (Z ST ) of Process Refers to Short Term Capability Shift Happens! Z ST dpmo , , ,538 Z ST dpmo , , ,538

2.7 Proprietary to General Electric Company SDM-V8 (11/30/2000) Long-Term / Short-Term Conversions Shift Z Z LT = Z ST -Z SH =>dpmo , , ,538 Z ST dpmo , , ,538 Z ST dpmo , , ,538 or  ST  LT Short Term Long Term USLT Inflate  Z LT Cal Z LT

2.8 Proprietary to General Electric Company SDM-V8 (11/30/2000) DPU and dpmo = 1 unit= 1 opportunity 1 unit = 4 opportunities = defect DPU = 1 dpo = 0.25 dpmo = 250,000 DPU = 2 dpo = 0.5 dpmo = 500,000 DPU = 3 dpo = 0.75 dpmo = 750,000 DPU = 1 dpo = dpmo = 125,000 Is this unit better than the one shown above it?

2.9 Proprietary to General Electric Company SDM-V8 (11/30/2000) 1.Calculate the probability of a defect for the following: 2. Calculate the probability of a defect for the following: 3.For the following continuous and attribute data, calculate the DPU, Z LT and Z ST. Assume data provided is long - term data. EXERCISE: Defect Calculations 03.5  =1.4 USL 03.5  =1.4 USL -4.2 LSL LowerUpperStd Spec LimitSpec LimitMeanDevdpmoOpportunitiesDPUZ LT Z ST a) b) c) d) e) P defect = ?

2.10 Proprietary to General Electric Company SDM-V8 (11/30/2000) 1.Calculate the probability of a defect for the following: 2. Calculate the probability of a defect for the following: 3.For the following continuous and attribute data, calculate the DPU, Z LT and Z ST. Assume data provided is long -term data. EXERCISE: Defect Calculations 03.5  =1.4 USL 03.5  =1.4 USL -4.2 LSL LowerUpperStd Spec LimitSpec LimitMeanDevdpmoOpportunitiesDPUZ LT Z ST P defect = P defect =.00756

2.11 Proprietary to General Electric Company SDM-V8 (11/30/2000) Normal Distribution Z Z e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-007 Z LT, 1-Tailed

2.12 Proprietary to General Electric Company SDM-V8 (11/30/2000) Normal Distribution (cont.) Z e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e-024 Z LT, 1-Tailed