Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 17 Wednesday, 01 October.

Slides:



Advertisements
Similar presentations
Biointelligence Lab School of Computer Sci. & Eng.
Advertisements

Inference Rules Universal Instantiation Existential Generalization
UIUC CS 497: Section EA Lecture #2 Reasoning in Artificial Intelligence Professor: Eyal Amir Spring Semester 2004.
Methods of Proof Chapter 7, second half.. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound)
Methods of Proof Chapter 7, Part II. Proof methods Proof methods divide into (roughly) two kinds: Application of inference rules: Legitimate (sound) generation.
Computing & Information Sciences Kansas State University Lecture 16 of 42 CIS 530 / 730 Artificial Intelligence Lecture 16 of 42 Knowledge Engineering.
Artificial Intelligence Chapter 14. Resolution in the Propositional Calculus Artificial Intelligence Chapter 14. Resolution in the Propositional Calculus.
Computing & Information Sciences Kansas State University Lecture 20 of 42 CIS 530 / 730 Artificial Intelligence Lecture 20 of 42 Introduction to Classical.
CPSC 322, Lecture 23Slide 1 Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from.
Artificial Intelligence Chapter 11: Planning
Inference in FOL Copyright, 1996 © Dale Carnegie & Associates, Inc. Chapter 9 Spring 2004.
CPSC 322, Lecture 23Slide 1 Logic: TD as search, Datalog (variables) Computer Science cpsc322, Lecture 23 (Textbook Chpt 5.2 & some basic concepts from.
Computing & Information Sciences Kansas State University Lecture 11 of 42 CIS 530 / 730 Artificial Intelligence Lecture 11 of 42 William H. Hsu Department.
Methods of Proof Chapter 7, second half.
Artificial Intelligence
Artificial Intelligence Chapter 14 Resolution in the Propositional Calculus Artificial Intelligence Chapter 14 Resolution in the Propositional Calculus.
Notes for Chapter 12 Logic Programming The AI War Basic Concepts of Logic Programming Prolog Review questions.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 26 of 41 Friday, 22 October.
Kansas State University Department of Computing and Information Sciences CIS 830: Advanced Topics in Artificial Intelligence Wednesday, February 7, 2001.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 25 Wednesday, 20 October.
Computing & Information Sciences Kansas State University Wednesday, 15 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 20 of 42 Wednesday, 15 October.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 21 of 41 Wednesday, 08.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 16 Monday, 29 September.
ARTIFICIAL INTELLIGENCE [INTELLIGENT AGENTS PARADIGM] Professor Janis Grundspenkis Riga Technical University Faculty of Computer Science and Information.
Computing & Information Sciences Kansas State University Wednesday, 22 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 22 of 42 Wednesday, 22 October.
Computing & Information Sciences Kansas State University Wednesday, 20 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 12 of 42 Wednesday, 20 September.
Computing & Information Sciences Kansas State University Lecture 22 of 42 CIS 530 / 730 Artificial Intelligence Lecture 22 of 42 Planning: Sensorless and.
Computing & Information Sciences Kansas State University Lecture 19 of 42 CIS 530 / 730 Artificial Intelligence Lecture 19 of 42 Knowledge Representation.
Computing & Information Sciences Kansas State University Wednesday, 25 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 26 of 42 Wednesday. 25 October.
Computing & Information Sciences Kansas State University Lecture 21 of 42 CIS 530 / 730 Artificial Intelligence Lecture 21 of 42 Planning: Graph Planning.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 11 of 41 Wednesday, 15.
CS Introduction to AI Tutorial 8 Resolution Tutorial 8 Resolution.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 13 of 41 Monday, 20 September.
Computing & Information Sciences Kansas State University Lecture 13 of 42 CIS 530 / 730 Artificial Intelligence Lecture 13 of 42 William H. Hsu Department.
Kansas State University Department of Computing and Information Sciences CIS 732: Machine Learning and Pattern Recognition Thursday, November 29, 2001.
The AI War LISP and Prolog Basic Concepts of Logic Programming
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 12 Friday, 17 September.
9/30/98 Prof. Richard Fikes Inference In First Order Logic Computer Science Department Stanford University CS222 Fall 1998.
Computing & Information Sciences Kansas State University Lecture 14 of 42 CIS 530 / 730 Artificial Intelligence Lecture 14 of 42 William H. Hsu Department.
Automated Reasoning Early AI explored how to automated several reasoning tasks – these were solved by what we might call weak problem solving methods as.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 9 of 42 Wednesday, 14.
Computing & Information Sciences Kansas State University Monday, 25 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 14 of 42 Monday, 25 September.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 23 Friday, 17 October.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 14 of 41 Wednesday, 22.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 15 of 41 Friday 24 September.
Computing & Information Sciences Kansas State University Lecture 15 of 42 CIS 530 / 730 Artificial Intelligence Lecture 15 of 42 William H. Hsu Department.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 18 of 41 Friday, 01 October.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 42 Monday, 08 December.
DEDUCTION PRINCIPLES AND STRATEGIES FOR SEMANTIC WEB Chain resolution and its fuzzyfication Dr. Hashim Habiballa University of Ostrava.
Computing & Information Sciences Kansas State University Wednesday, 19 Sep 2007CIS 530 / 730: Artificial Intelligence Lecture 12 of 42 Wednesday, 19 September.
Computing & Information Sciences Kansas State University Monday, 23 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 25 of 42 Monday, 23 October.
Computing & Information Sciences Kansas State University Friday, 20 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 24 of 42 Friday, 20 October.
Computing & Information Sciences Kansas State University Lecture 12 of 42 CIS 530 / 730 Artificial Intelligence Lecture 12 of 42 William H. Hsu Department.
Computing & Information Sciences Kansas State University Wednesday, 13 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 10 of 42 Wednesday, 13 September.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 24 of 41 Monday, 18 October.
Computing & Information Sciences Kansas State University CIS 530 / 730: Artificial Intelligence Lecture 09 of 42 Wednesday, 17 September 2008 William H.
Computing & Information Sciences Kansas State University Monday, 09 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 19 of 42 Monday, 09 October.
Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 14 of 42 Wednesday, 22.
Proof Methods for Propositional Logic CIS 391 – Intro to Artificial Intelligence.
Knowledge Repn. & Reasoning Lecture #9: Propositional Logic UIUC CS 498: Section EA Professor: Eyal Amir Fall Semester 2005.
Computing & Information Sciences Kansas State University Wednesday, 04 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 17 of 42 Wednesday, 04 October.
Computing & Information Sciences Kansas State University Monday, 22 Sep 2008CIS 530 / 730: Artificial Intelligence Lecture 11 of 42 Monday, 22 September.
Computing & Information Sciences Kansas State University Friday, 13 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 21 of 42 Friday, 13 October.
Computing & Information Sciences Kansas State University Wednesday, 25 Oct 2006CIS 490 / 730: Artificial Intelligence Lecture 26 of 42 Wednesday. 25 October.
Computing & Information Sciences Kansas State University Monday, 18 Sep 2006CIS 490 / 730: Artificial Intelligence Lecture 11 of 42 Monday, 18 September.
Computing & Information Sciences Kansas State University Friday, 03 Oct 2008CIS 530 / 730: Artificial Intelligence Lecture 16 of 42 Friday, 03 October.
EA C461 Artificial Intelligence
Resolution in the Propositional Calculus
Biointelligence Lab School of Computer Sci. & Eng.
Biointelligence Lab School of Computer Sci. & Eng.
Presentation transcript:

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture 17 Wednesday, 01 October 2003 William H. Hsu Department of Computing and Information Sciences, KSU Reading: Sections 11.1 – 11.4, Russell and Norvig Introduction to Classical Planning

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Lecture Outline Today’s Reading –Sections 11.1 – 11.4, Russell and Norvig –References: to be posted on class web board Thursday’s Reading: Sections 11.5 – 11.9, Russell and Norvig Previously: Logical Representations and Theorem Proving –Propositional, predicate, and first-order logical languages –Proof procedures: forward and backward chaining, resolution refutation Today: Introduction to Classical Planning –Search vs. planning –STRIPS axioms Thursday: More Classical Planning –Partial-order planning (NOAH, etc.) –Limitations Midterm Exam: Tuesday 23 Oct 2001, in class –Remote students: have exam agreement faxed to DCE –Exam will be faxed to proctors Monday 22 Oct 2001

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Logic Programming – Tricks of The Trade [1]: Dealing with Equality Problem –How to find appropriate inference rules for sentences with =? –Unification OK without it, but… –A = B doesn’t force P(A) and P(B) to unify Solutions –Demodulation Generate substitution from equality term Additional sequent rule: p. 284 R&N –Paramodulation More powerful Generate substitution from WFF containing equality constraint e.g., (x = y)  P(x) Sequent rule sketch: p. 284 R&N

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Logic Programming – Tricks of The Trade [2]: Resolution Strategies Unit Preference –Idea: Prefer inferences that produce shorter sentences (compare: Occam’s Razor) –How? Prefer unit clause (single-literal) resolvents –Reason: trying to produce a short sentence (   True  False) Set of Support –Idea: try to eliminate some potential resolutions (prevention as opposed to cure) –How? Maintain set SoS of resolution results and always take one resolvent from it –Caveat: need right choice for SoS to ensure completeness Input Resolution and Linear Resolution –Idea: “diagonal” proof (proof “list” instead of proof tree) –How? Every resolution combines some input sentence with some other sentence –Input sentence: in original KB or query –Generalize to linear resolution: include any ancestor in proof tree to be used Subsumption –Idea: eliminate sentences that sentences that are more specific than others –E.g., P(x) subsumes P(A)

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Logic Programming – Tricks of The Trade [3]: Indexing Strategies Store and Fetch –Idea: store knowledge base in list of conjuncts –STORE: constant, i.e., O(1) worst-case running time –FETCH: linear, i.e., O(n) time Table Based –Idea: store KB in hash table (key: ground literals) –STORE: O(1) –FETCH: O(1) expected case –Problems Complex WFFs (other than negated atoms) Variables –Solution: implicative normal form matching (Figure 10.1, p. 301 R&N) Tree-Based –What if there are many clauses for a predicate? (e.g., Brother ( , x)) –Type of combined indexing: joint primary key – predicate and argument symbols –May need background knowledge for semantic query optimization (SQO)

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley Logic Programming – Tricks of The Trade [4]: Compilation Intermediate Languages –Abstract machines Warren Abstract Machine (WAM) Java Virtual Machine (JVM) –Imperative intermediate representations (IRs) C/C++ LISP / Scheme / SML – functional languages with imperative features Use in Genetic Programming (GLP): Later Beyond Scope of CIS 730: Compiling with Continuations (Appel)

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley Search versus Planning [1]

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley Planning in Situation Calculus

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley STRIPS Operators

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley State Space versus Plan Space

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Summary Points Previously: Logical Representations and Theorem Proving –Propositional, predicate, and first-order logical languages –Proof procedures: forward and backward chaining, resolution refutation Today: Introduction to Classical Planning –Search vs. planning –STRIPS axioms Operator representation Components: preconditions, postconditions (ADD, DELETE lists) Thursday: More Classical Planning –Partial-order planning (NOAH, etc.) –Limitations

Kansas State University Department of Computing and Information Sciences CIS 730: Introduction to Artificial Intelligence Adapted from slides by S. Russell, UC Berkeley Terminology Classical Planning –Planning versus search –Problematic approaches to planning Forward chaining Situation calculus –Representation Initial state Goal state / test Operators Efficient Representations –STRIPS axioms Components: preconditions, postconditions (ADD, DELETE lists) Clobbering / threatening –Reactive plans and policies –Markov decision processes