Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Guillermina Ramirez San Juan
Quantum Computation Using Optical Lattices Ben Zaks Victor Acosta Physics 191 Prof. Whaley UC-Berkeley.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Polar molecules in optical lattices Ryan Barnett Harvard University Mikhail Lukin Harvard University Dmitry Petrov Harvard University Charles Wang Tsing-Hua.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Experimental study of Efimov scenario in ultracold bosonic lithium
Tunable Molecular Many-Body Physics and the Hyperfine Molecular Hubbard Hamiltonian Michael L. Wall Department of Physics Colorado School of Mines in collaboration.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
11/14/2007NSU, Singapore Dipolar Quantum Gases: Bosons and Fermions Han Pu 浦晗 Rice University, Houston, TX, USA Dipolar interaction in quantum gases Dipolar.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
TC, U. Dorner, P. Zoller C. Williams, P. Julienne
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Making cold molecules from cold atoms
Lasers and effects of magnetic field
Laboratoire de Physique des Lasers
Novel quantum states in spin-orbit coupled quantum gases
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Presentation transcript:

Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC Conference Munich – 23 May 2011

Interactions in BECs Van der Waals / contact interactions : short range and isotropic at low T Effective potential a S  (R), with a S = scattering length in channel S, a S is magnetically tunable through Feshbach resonances Dipole-dipole interactions : long range and anisotropic magnetic atoms Cr, Er, Dy; dipolar molecules; Rydberg atoms Chromium atoms carry a magnetic moment of 6µ B MDDI are 36 times bigger than in alkali BECs We produce and study 52 Cr Bose-Einstein Condensates

Dipole-dipole interaction potential Anisotropic Chromium (S=3): contact AND dipole-dipole interactions R Non local anisotropic mean-field Coupling between spin and rotation

PART ONE OF THE TALK DIPOLAR RELAXATION INHIBITION SPIN DYNAMICS IN AN OPTICAL LATTICE How a 2D lattice can stabilize an unstable BEC ?

DR causes heating then losses and the magnetic field strength controls DR Inelastic collisions - dipolar relaxation DR Zeeman energy ladder in B

Angular momentum conservation Induces rotation in the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Two allowed channels for ground state atoms Inelastic collisions - dipolar relaxation DR K. Gawryluk et al. PRL 106, (2011) M. Gajda, PRL 99, (2007) B. Sun and L. You, PRL 99, (2007) Plus many other… B

Dipolar relaxation in optical lattices – Experimental procedure Adiabatic loading of the ground state M = - 3 BEC in a 1D or a 2D lattice Rf induced transition to the metastable state M = +3 Hold time while DR takes place RF sweep back to M = -3 Detection Produce BEC m=-3 detect m=-3 get the DR rate Rf sweep 1Rf sweep 2 BEC m=+3, hold time Load optical lattice adiabatic Band mapping

Lattices provide tightly confined geometries (tubes or pancakes) They introduce a new energy scale and they change the initial and final states space. Dipolar relaxation in optical lattices Above B c, DR releases energy and creates a « mini-vortex » in a lattice site Optical lattices: periodic potential = ac-Stark shift in a far-detuned standing wave m=3 m=2 B

B ≈ 40 mG Spin-flipped atoms get promoted from the lowest band to the excited bands when B is over the threshold set by Spin relaxation and band excitation in optical lattices B

What do we measure in 1D ? (band mapping for B above threshold) Velocity distribution along the tubes Population in different bands due to dipolar relaxation m=3 m= Heating due to collisional de- excitation from excited band

Dipolar relaxation inhibition in 1D (below B c ) Conversely (almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices B. Pasquiou et al., Phys. Rev. Lett. 106, (2011)

Above threshold: Vortices are expected to pop up (EdH effect) but they fade away by tunneling PRA 81, (2010) Phys. Rev. Lett. 106, (2011) Log scale !! 3D trap pancakes tubes Below threshold: a (spin-excited) metastable 1D quantum gas (>100ms) ; Interest for spinor physics, spin excitations in 1D…

PART TWO OF THE TALK SPONTANEOUS DEMAGNETIZATION OF A SPINOR BEC What happens at extremely low magnetic fields ? ie when This happens for B <few 0.1 mG

S=3 Spinor physics with free magnetization - To date, spinor studies have been restricted to S=1 and S=2 -Up to now, all spinor dynamics studies were restricted to constant magnetization As required by contact interactions - eg in Rb a pair of colliding atoms stays in the M = m S1 +m S2 = 0 multiplicity 0 1 New features with Cr -First S=3 spinor - Dipole-dipole interactions free the magnetization - Possible investigation of the true many-body ground state of the system (which requires stable and very small magnetic fields)

when B ≈ 4 mG the chemical potential is much smaller than the Zeeman splittings Ferromagnetic phase of the spinor condensate Above threshold Starting point : BEC in the m= -3 single particle ground state Procedure: lower B for example to 1mG Detection TOF + Stern-Gerlach Ferromagnetic / polarized phase

when the final B ≈ 0.4 mG then the chemical potential becomes on the order of Zeeman splittings …spin-flipped atoms gain energy Spontaneous demagnetization of the spinor condensate Above threshold Below threshold Starting point : BEC in the m= -3 single particle ground state Procedure: lower the magnetic field Detection TOF + Stern-Gerlach

S=3 multi-component BEC with free magnetization Santos PRL 96, (2006) Ho PRL. 96, (2006) Zeeman states; all trapped four scattering lengths: a 6, a 4, a 2, a 0 Spontaneous demagnetization : the reason why it happens ! at B c, it costs no energy to go from m= -3 to m= -2 : loss in interaction energy compensates for the gain in Zeeman energy) Contact interactions decide which spin configuration has the lowest energy Phases set by contact interactions differ by their magnetization Magnetic field a 0 /a 6 ferromagnetic i.e. polarized in the lowest energy single particle state Phase transitions can occur between: Ferromagnetic / Polar/ Cyclic phases

Mean-field effect: when does the transition take place ? BECLattice Critical field0.26 mG1.25 mG Demag time3ms10ms Critical field for depolarization depends on the density (exp check for linearity) Magnetic field control below 0.5 mG (actively stabilized) (0.1mG stability) (no magnetic shield…)

Dynamics of the depolarization Time (ms) Remaining atoms in m=-3 Timescale for depolarization: (a few in 3D to 10 ms in the 2D lattice) Spontaneous demagnetization : how it happens ? What triggers the transistion ? Phases are set by contact interactions, while (de)magnetization dynamics is due to and set by dipole-dipole interactions « quantum magnetism » B. Pasquiou et al., Phys. Rev. Lett. (in the press) and arXiv:

Conclusion Dipolar relaxation in bulk BECs and in reduced dimensions Spontaneous demagnetization in a quantum gas -phase transition -first steps towards evidence for spinor S=3 ground state structure -spinor thermodynamics with free magnetization Outlook Towards a demonstration of Einstein-de-Haas effect - rotation in 3D lattice sites Excitation spectrum (poster tomorrow and PRL 105, (2010)) Project : quantum gas of dipolar fermionic 53 Cr

Acknowledgements Financial support: Conseil Régional d’Ile de France (Contrat Sésame) Ministère de l’Enseignement Supérieur et de la Recherche (CPER, FNS and ANR) European Union (FEDER) IFRAF CNRS Université Paris Nord

Ph.D students: Gabriel Bismut Benjamin Pasquiou www-lpl.univ-paris13.fr:8082 Permanent staff: Bruno Laburthe-Tolra, Etienne Maréchal, Paolo Pedri, Laurent Vernac and O. G. Former members Arnaud Pouderous, Radu Chicireanu, Quentin Beaufils, Thomas Zanon, Jean-ClaudeKeller, René Barbé Group members : The Cold Atom Group in Paris Nord

E.Maréchal, OG, P. Pedri, Q. Beaufils (PhD), B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD), D. Ciampini (invited), M. Champion, JP Alvarez (trainees) Post-doc position available (Q4 2011) apply now!! www-lpl.univ-paris13.fr:8082