Dec. 8th, 2000NOON 20001 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.

Slides:



Advertisements
Similar presentations
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Advertisements

20. Feb. 2002, LTP1 Electronics for the  e  experiment Short introduction and status Trigger electronics DAQ electronics Slow Control Developments useful.
03 Aug NP041 KOPIO Experiment Measurement of K L    Hideki Morii (Kyoto Univ.) for the KOPIO collaborations Contents Physics Motivation.
LFV and LUV at CLEO Lepton-Flavor Violation: –Probe non-SM physics and/or SM extensions –Here, report on Upsilon(1S)   Complements other studies MEG.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Shuei YAMADA, ICEPP, University of tau04 Nara, Sep. 15, Search for the Lepton Flavor Violating Decay  e  in the MEG Experiment Shuei YAMADA.
MEG 1  e  search at PSI: SUGRA indications SUSY SU(5) predictions BR (  e  )   SUSY SO(10) predictions BR SO(10)  100 BR SU(5) R.
Yasuhiro NISHIMURA Hiroaki NATORI The University of Tokyo MEG collaboration Outline  → e  and MEG experiment Design of detector Calibration Performance.
Upgrade of liquid xenon gamma-ray detector in MEG experiment Daisuke Kaneko, the University of Tokyo, on behalf of the MEG collaboration MEG EXPERIMENT.
Wataru Ootani, ICEPP, Univ. of Tokyo SORMA X, May 21, 2002 Development of liquid xenon scintillation detector for new experiment to search for   e 
July 16/17, 2002 MUEGAMMA review PSI1 Slow Control.
Mar Toshiyuki Iwamoto (ICEPP) JPS 2010 Spring meeting, Okayama University1 MEG 実験による   e  探索 Run2009 東京大学素粒子物理国際研究センター 岩本敏幸 他 MEG コラボレーション.
Satoshi Mihara ICEPP, Univ. of Tokyo Feb MEG Review Meeting 1 CEX beam test at piE1 Satoshi Mihara.
HYP03 Future Hypernuclear Program at Jlab Hall C Satoshi N. Nakamura Tohoku University 18 th Oct 2003, JLab.
May 9, 2002 TRIUMF Canada1 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Motivation.
PERFORMANCE OF THE MACRO LIMITED STREAMER TUBES IN DRIFT MODE FOR MEASUREMENTS OF MUON ENERGY - Use of the MACRO limited streamer tubes in drift mode -Use.
Conveneers: M. Grassi (INFN, Pisa), K. Ishida (RIKEN), Y. Semertzidis (BNL) Summary of WG4, Part Two. Yannis Semertzidis, BNL 1 August, 2004 Most muon.
2 1/March/2015 日本物理学会大70回年次大会@早稲田大学 東大ICEPP 内山雄祐 他 MEG II collaboration.
MEG positron spectrometer Oleg Kiselev, PSI on behalf of MEG collaboration.
Setup for hypernuclear gamma-ray spectroscopy at J-PARC K.Shirotori Tohoku Univ. Japan for the Hyperball-J collaboration J-PARC E13 hypernuclear  -ray.
Status of E391a Search for K L    decay G.Y.Lim IPNS, 32nd ICHEP 19 th August 2004 Beijing.
M. Grassi – INFN Pisa La Thuile - March 15 th, A sensitive search fordecay: the MEG experiment Marco Grassi INFN, Pisa on behalf of the MEG Collaboration.
19 April 2006Fabrizio Cei1 The Liquid Xenon Calorimeter of the MEG Experiment Fabrizio Cei INFN and Universita’ di Pisa Incontri di Fisica delle Alte Energie.
Tackling the search for Lepton Flavor Violation with GHz waveform digitizing using the DRS chip Stefan Ritt Paul Scherrer Institute, Switzerland.
March 2002, JINR Dubna1 A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction.
Status of the MEG Experiment  → e  On behalf of the MEG collaboration Stefan Ritt Paul Scherrer Institute, Switzerland.
1 fact03 NY June 6 th 2003 Particle physics with intense muon beams A.M. Baldini - INFN Pisa.
March 6, INST02, Novosibirsk1 Electronics for the  e  experiment at PSI Short introduction Trigger electronics DAQ electronics Slow Control For the.
The DRS2 Chip: A 4.5 GHz Waveform Digitizing Chip for the MEG Experiment Stefan Ritt Paul Scherrer Institute, Switzerland.
Ю.Г. Куденко 1 Редкие распады каонов Дубна, 12 мая 2004 Вторые Марковские чтения Дубна-Москва, мая 2004 г. Институт ядерных исследований РАН CKM.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
1 Satoshi Mihara for the   e  collaboration, review meeting at PSI, Jul 2002 Photon Detector Satoshi Mihara ICEPP, Univ. of Tokyo 1.Large Prototype.
Deeply Virtual Compton Scattering on the neutron Malek MAZOUZ LPSC Grenoble EINN 2005September 23 rd 2005.
Lepton Flavor Violation: Goals and Status of the MEG Experiment at PSI Stefan Ritt Paul Scherrer Institute, Switzerland.
Lecture 9: Inelastic Scattering and Excited States 2/10/2003 Inelastic scattering refers to the process in which energy is transferred to the target,
Current status of MEG Experiment Yasuko HISAMATSU ICEPP, The Univ. of Tokyo ICEPP Symposium.
First results from the MEG/RE12 experiment at PSI A.M. Baldini 29 sep 2009 Hep-ex: v1 18 Aug 2009.
Μ→e search using pulsed muon beam μ -  e - νν nuclear muon capture Muon Decay In Orbit  π - +(A,Z)→(A,Z-1)*, (A,Z-1)* →γ+(A,Z-1), γ→e + e - Prompt.
Jefferson Laboratory Hall A SuperBigBite Spectrometer Data Acquisition System Alexandre Camsonne APS DNP 2013 October 24 th 2013 Hall A Jefferson Laboratory.
Overview of the experiment Collaboration (about 30 physicists at this meeting) Budget Realistic schedule and general status (few words) of each sub-detector.
TYPE1 BOARD Type1 boards are compliant with 6U VME standard. Each board receives 16 analog signals from experimental devices. These signals are digitized.
J-PARC でのハイパー核ガンマ線分光実験用 散乱粒子磁気スペクトロメータ検出器の準備 状況 東北大理, 岐阜大教 A, KEK B 白鳥昂太郎, 田村裕和, 鵜養美冬 A, 石元茂 B, 大谷友和, 小池武志, 佐藤美沙子, 千賀信幸, 細見健二, 馬越, 三輪浩司, 山本剛史, 他 Hyperball-J.
Liquid Xe detector for m +  e + g search Kenji Ozone ( ICEPP, Univ. of Tokyo, Japan ) Introduction prototype R&D ー PMTs ー small & large type summary Outline.
Particle Physics Experiments at PSI Stefan Ritt Paul Scherrer Institute, Switzerland.
First results from SND at VEPP-2000 S. Serednyakov On behalf of SND group VIII International Workshop on e + e - Collisions from Phi to Psi, PHIPSI11,
R&D works on Liquid Xenon Photon Detector for μ  e γ experiment at PSI Satoshi Mihara ICEPP, Univ. of Tokyo Outline Introduction Prototype R&D works Summary.
Upgrade of the MEG liquid xenon calorimeter with VUV-light sensitive large area SiPMs Kei Ieki for the MEG-II collaboration 1 II.
Development of UV-sensitive MPPC for upgrade of liquid xenon detector in MEG experiment Daisuke Kaneko, on behalf of the MEG Collaboration µ γ Liquid xenon.
Status and perspectives of the MEG Experiment Fabrizio Cei INFN & University of Pisa On behalf of the MEG Collaboration FCCP 2015 Workshop Capri,
g beam test of the Liquid Xe calorimeter for the MEG experiment
The MEG Experiment at PSI: a sensitive search for m eg decay
Search for lepton flavor violation: Latest results from the MEG experiment Gordon Lim.
The Electromagnetic calorimeter of the MEG Experiment
The WaveDAQ System for the MEG II Upgrade
Cecilia Voena INFN Roma on behalf of the MEG collaboration
Liquid Xenon Detector for the MEG Experiment
New experiment to search for mge g at PSI status and prospects
大強度
MEG Experiment at PSI R&D of Liquid Xenon Photon Detector
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
Upgrade of LXe gamma-ray detector in MEG experiment
A personal overview of particle physics activities at PSI
MEG実験アップグレードに向けたSiPMを用いた ポジトロン時間測定器の研究開発
Stefan Ritt Paul Scherrer Institute, Switzerland
Status of the experiment in Italy
Decay Angular Measurement in the MEG Experiment
New Results from the MEG Experiment
Presentation transcript:

Dec. 8th, 2000NOON A new   e  experiment at PSI For the MUEGAMMA collaboration Stefan Ritt (Paul Scherrer Institute, Switzerland) Introduction Experimental Technique Current status

Dec. 8th, 2000NOON Physics Motivation SUSY theories generically predict LFV LFV forbidden by Standard Model Processes like  +  e +  are not “contaminated” by SM processes and therefore very clean Discovered oscillations are expected to enhance LFV rate The search for  +  e +  is therefore a promising field to find physics beyond the SM

Dec. 8th, 2000NOON Prediction from SUSY SU(5) This experiment Current experimental bound 2) f t (M)=2.4  >0 M l =50GeV 1) 1)J. Hisano et al., Phys. Lett. B391 (1997) 341 2)MEGA collaboration, hep-ex/

Dec. 8th, 2000NOON Connection with oscillations 1) 1)J. Hisano and D. Nomura, Phys. Rev. D59 (1999) )MEGA collaboration, hep-ex/ ) This experiment

Dec. 8th, 2000NOON Previous  +  e +  Experiments PlaceYearUpper limitAuthor SIN (PSI), Switzerland1977 < 1.0  A. Van der Schaaf et al. TRIUMF, Canada1977 < 3.6  P. Depommier et al. LANL, USA1979 < 1.7  W.W. Kinnison et al. LANL, USA1986 < 4.9  R.D. Bolton et al. LANL, USA1999 < 1.2  MEGA Collab., M.L. Brooks et al. New experiment: at PSI Letter of Intend 1998 Proposal 1999, approved May 1999 New experiment: at PSI Letter of Intend 1998 Proposal 1999, approved May 1999

Dec. 8th, 2000NOON MEG Collaboration InstituteCountryMain Resp.HeadScientistsStudents ICEPP, Univ. of TokyoJapanLXe CalorimeterT. Mori122 Waseda UniversityJapanCryogenicsT. Doke52 INFN, PisaItaly e + counter, trigger, M.C. C. Bemporad43 IPNS, KEK, TsukubaJapan Supercoducting Solenoid A. Maki5- PSISwitzerland Drift Chamber, Beamline, DAQ S. Ritt4- BINP, NovosibirskRussia LXe Tests and Purification B. Khazin4- Nagoya UniversityJapanCryogenicsK. Masuda

Dec. 8th, 2000NOON Experimental Method Stopped  beam of 10 8 s -1, 100% duty factor Liquid Xe calorimeter for  detection Solenoidal magnetic spectrometer with gradient field Radial drift chambers for e + momentum determination Timing counter for e + Stopped  beam of 10 8 s -1, 100% duty factor Liquid Xe calorimeter for  detection Solenoidal magnetic spectrometer with gradient field Radial drift chambers for e + momentum determination Timing counter for e + E e = 52.8 MeV Kinematics  e  = 180° E g = 52.8 MeV e  

Dec. 8th, 2000NOON Signal and Background  +  e +  signal very clear –E  = E e+ = 52.8 MeV –   e+ = 180° –e + and  in time Background –Radiative  + decays –Accidental overlap Detector Requirements –Excellent energy resolution –Excellent timing resolution –Good angular resolution ee e  e   ee  e    e  e 

Dec. 8th, 2000NOON   e  Signature  e  E e,E  = 52.8MeV  e  E e,E  < 52.8MeV X = E e /52.8MeV Y = E  /52.8MeV

Dec. 8th, 2000NOON Sensitivity and Background Rate BR(  e  ) = (N  T  /4   e    sel ) -1 = 0.94  NN 1  10 8 T 2.2  10 7 s (~50 weeks)  /4  0.09 ee 0.95  0.7  sel 0.8 FWHM EeEe 0.7% EE 1.4%  e  12 mrad tete 150 ps Prompt Background B pr  Accidental BackgroundB acc   E e  t e  (  E  ) 2 (  e  ) 2  5 

Dec. 8th, 2000NOON Paul Scherrer Institute Experimental Hall

Dec. 8th, 2000NOON Experimental Hall

Dec. 8th, 2000NOON Sindrum PSI  - Ti  e - Ti : Oct (50d) beam time: 90% C.L. limit: B ue =

Dec. 8th, 2000NOON  E5 Beam Line 10 8  /s on 5  5 mm 2 Neutron background measured in 1998 Beam test planned in Spring  /s on 5  5 mm 2 Neutron background measured in 1998 Beam test planned in Spring 2001

Dec. 8th, 2000NOON Detector

Dec. 8th, 2000NOON LXe Calorimeter ~800l liquid Xe (3t) ~800 PMTs immersed in LXe Only scintillation light detected Fast response (45 ns decay time) High light output (70% of NaI(Tl)) 1) High uniformity compared with segmented calorimeters High channel occupancy will be accommodated by special trigger scheme ~800l liquid Xe (3t) ~800 PMTs immersed in LXe Only scintillation light detected Fast response (45 ns decay time) High light output (70% of NaI(Tl)) 1) High uniformity compared with segmented calorimeters High channel occupancy will be accommodated by special trigger scheme 1) T. Doke and K. Masuda, NIM A 420 (1999) 62

Dec. 8th, 2000NOON  Response Signal is distributed over many PMTs in most cases Weighted mean of PMTs on the front face   x ~ 4mm FWHM Broadness of distribution   z ~ 16mm FWHM Timing resolution   t ~ 100ps FWHM Energy resolution ~ 1.4% FWHM depends on light attenuation in LXe Signal is distributed over many PMTs in most cases Weighted mean of PMTs on the front face   x ~ 4mm FWHM Broadness of distribution   z ~ 16mm FWHM Timing resolution   t ~ 100ps FWHM Energy resolution ~ 1.4% FWHM depends on light attenuation in LXe x z

Dec. 8th, 2000NOON Calorimeter Prototypes 32 PMTs, 2.3 l LXe Tested with radioactive sources 51 Cr, 137 Cs, 54 Mn, 88 Y Extrapolated resolutions at 52.8 MeV in agreement with quoted numbers “Small”“Large” 264 PMTs, 150 l LXe Assembly finished next January Measure resolutions with 40 MeV photon beam at ETL, Tsukuba, Japan

Dec. 8th, 2000NOON Positron Spectrometer Homogeneous Field Gradient Field (COnstant-Bending-RAdius) e + from  +  e +  Ultra-Thin (~3g/cm2) superconducting solenoid with 1.2 T field Ultra-Thin (~3g/cm2) superconducting solenoid with 1.2 T field

Dec. 8th, 2000NOON Drift Chamber 16 radial chambers with 20 wires each Staggered cells measure both position and time He – C 2 H 6 gas to reduce multiple scattering Vernier pattern to determine z coordinate 16 radial chambers with 20 wires each Staggered cells measure both position and time He – C 2 H 6 gas to reduce multiple scattering Vernier pattern to determine z coordinate

Dec. 8th, 2000NOON Prototype Test at PSI 0, 0.6, 0.8, 1T field 3 tilting angles Data analysis finished soon 0, 0.6, 0.8, 1T field 3 tilting angles Data analysis finished soon

Dec. 8th, 2000NOON Positron timing counter Aimed resolution ~100ps FWHM Beam tests at KEK in July 1999 Taken over by Pisa group Scintillators ordered Beam tests next spring Aimed resolution ~100ps FWHM Beam tests at KEK in July 1999 Taken over by Pisa group Scintillators ordered Beam tests next spring

Dec. 8th, 2000NOON Trigger Requirements  Beam rate10 8 s -1  Fast LXe energy sum > 45MeV2  10 3 s -1   interaction point  e + hit point in timing counter  time correlation  – e s -1  angular corrlation  – e + 20 s -1  Beam rate10 8 s -1  Fast LXe energy sum > 45MeV2  10 3 s -1   interaction point  e + hit point in timing counter  time correlation  – e s -1  angular corrlation  – e + 20 s -1 E e = 52.8 MeV Kinematics  e  = 180° E g = 52.8 MeV e   M.C.

Dec. 8th, 2000NOON Trigger Implementation FADC 100MHz 8-bit FPGA FADC SRAM Trigger FADC FPGA FADC SRAM BS    Max T[ns] >45MeV   e+ AND 10 stages = 1024 chn … 800 channels - Baseline Subtraction...

Dec. 8th, 2000NOON Waveform Digitizing Waveform Digitizing for all channels Custom domino sampling chip (DSC) designed at PSI Costs per DSC ~1US$ 2.5 GHz sampling speed  40ps timing resolution Sampling depth 1024 bins  400ns (100ns+300ns) Readout electronics similar to trigger Drift chamber signals go directly to FADC (100MHz) Waveform Digitizing for all channels Custom domino sampling chip (DSC) designed at PSI Costs per DSC ~1US$ 2.5 GHz sampling speed  40ps timing resolution Sampling depth 1024 bins  400ns (100ns+300ns) Readout electronics similar to trigger Drift chamber signals go directly to FADC (100MHz) FPGA FADCSRAM... Analog Waveform Sampling Chip (DSC) 2.5GHz 40MHz, 10 bit VME Previous Version 1.2 GHz C. Brönnimann et al., NIM A420 (1999) 264

Dec. 8th, 2000NOON Time Table PlanningR & DAssemblyData Taking now Conclusions Preparations are going well in all areas of the experiment Innovative technologies developed useful for other experiments Next major milestone: Large prototype test in Tsukuba spring 2001 Increasing support from PSI and Pisa New collaborators are welcome Preparations are going well in all areas of the experiment Innovative technologies developed useful for other experiments Next major milestone: Large prototype test in Tsukuba spring 2001 Increasing support from PSI and Pisa New collaborators are welcome