MPQ Acknowledgments for Collaboration: G. Mourou, X. M. Zhang,Y. M. Shin, D. Farinella, T. Saeki, D. Farinella, N. Naumova, K. Nakajima, S. Bulanov, A.

Slides:



Advertisements
Similar presentations
Extreme Light Infrastructure ELI
Advertisements

Vulcan Front End OPCPA System
Rutherford Appleton Laboratory Three mechanisms interact to cause ion acceleration in PW laser interactions Relativistic electrons expelled by the ponderomotive.
Design and Experimental Considerations for Multi-stage Laser Driven Particle Accelerator at 1μm Driving Wavelength Y.Y. Lin( 林元堯), A.C. Chiang (蔣安忠), Y.C.
CO 2 laser system M. Polyanskiy, I. Pogorelsky, M. Babzien, and V. Yakimenko.
The scaling of LWFA in the ultra-relativistic blowout regime: Generation of Gev to TeV monoenergetic electron beams W.Lu, M.Tzoufras, F.S.Tsung, C. Joshi,
Physics of a 10 GeV laser-plasma accelerator stage Eric Esarey HBEB Workshop, Nov , C. Schroeder, C. Geddes, E. Cormier-Michel,
Particle acceleration in plasma By Prof. C. S. Liu Department of Physics, University of Maryland in collaboration with V. K. Tripathi, S. H. Chen, Y. Kuramitsu,
C. McGuffey a, W. Schumaker a, S. Kneip b, F. Dollar a, A. Maksimchuk a, A. G. R. Thomas a, and K. Krushelnick a (a) University of Michigan, Center for.
0 Relativistic induced transparency and laser propagation in an overdense plasma Su-Ming Weng Theoretical Quantum Electronics (TQE), Technische Universität.
Contour plots of electron density 2D PIC in units of  [n |e|] cr wake wave breaking accelerating field laser pulse Blue:electron density green: laser.
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Historical Review on the Plasma Based Particle Accelerators Congratulation for opening “Plasma and Space Science Center” Yasushi Nishida Lunghwa University.
kHz-driven high-harmonic generation from overdense plasmas
Modeling narrow trailing beams and ion motion in PWFA Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009.
The Intensity-Pulse Duration Conjecture: ELI’s Lynchpin ELI-NP: The Way Ahead Bucharest March 10, 2011 Gérard Mourou, Institut de Lumière Extrême 28/02/11mourou.
High-charge energetic electron beam generated in the bubble regime Baifei Shen ( 沈百飞 ) State Key Laboratory of High Field Laser Physics, Shanghai Institute.
Enhancement of electron injection using two auxiliary interfering-pulses in LWFA Yan Yin ( 银燕 ) Department of Physics National University of Defense Technology.
Update on LLNL FI activities on the Titan Laser A.J.Mackinnon Feb 28, 2007 Fusion Science Center Meeting Chicago.
Lecture 3: Laser Wake Field Acceleration (LWFA)
KeV Harmonics from Solid Targets - The Relatvisitic Limit and Attosecond pulses Matt Zepf Queens University Belfast B.Dromey et al. Queen’s University.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
Introductio n The guiding of relativistic laser pulse in performed hollow plasma channels Xin Wang and Wei Yu Shanghai Institute of Optics and Fine Mechanics,
1 Pukhov, Meyer-ter-Vehn, PRL 76, 3975 (1996) Laser pulse W/cm 2 plasma box (n e /n c =0.6) B ~ mc  p /e ~ 10 8 Gauss Relativistic electron beam.
Measurement of Magnetic field in intense laser-matter interaction via Relativistic electron deflectometry Osaka University *N. Nakanii, H. Habara, K. A.
2 Lasers: Centimeters instead of Kilometers ? If we take a Petawatt laser pulse, I=10 21 W/cm 2 then the electric field is as high as E=10 14 eV/m=100.
R & D for particle accelerators in the CLF Peter A Norreys Central Laser Facility STFC Fellow Visiting Professor, Imperial College London.
Rainer Hörlein 9/12/ ICUIL 2010 Watkins Glen Femtosecond Probing of Solid Density Plasmas with Coherent High Harmonic Radiation Rainer Hörlein.
FACET and beam-driven e-/e+ collider concepts Chengkun Huang (UCLA/LANL) and members of FACET collaboration SciDAC COMPASS all hands meeting 2009 LA-UR.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
All-optical accelerators
Particle acceleration by circularly polarized lasers W-M Wang 1,2, Z-M Sheng 1,3, S Kawata 2, Y-T Li 1, L-M Chen 1, J Zhang 1,3 1 Institute of Physics,
Yen-Yu Chang, Li-Chung Ha, Yen-Mu Chen Chih-Hao Pai Investigator Jypyng Wang, Szu-yuan Chen, Jiunn-Yuan Lin Contributing Students Institute of Atomic and.
Institute of Atomic and Molecular Sciences, Academia Sinica, Taiwan National Taiwan University, Taiwan National Central University, Taiwan National Chung.
R. Kupfer, B. Barmashenko and I. Bar
Classical and quantum electrodynamics e®ects in intense laser pulses Antonino Di Piazza Workshop on Petawatt Lasers at Hard X-Ray Sources Dresden, September.
VARIOUS MECHANISMS OF ELECTRON HEATING AT THE IRRADIATION OF DENSE TARGETS BY A SUPER-INTENSE FEMTOSECOND LASER PULSE Krainov V.P. Moscow Institute of.
LASER-PLASMA ACCELERATORS: PRODUCTION OF HIGH-CURRENT ULTRA-SHORT e - -BEAMS, BEAM CONTROL AND RADIATION GENERATION I.Yu. Kostyukov, E.N. Nerush (IAP RAS,
ELI Nuclear Physics Workshop Magurele Feb Gérard Mourou
W.Lu, M.Tzoufras, F.S.Tsung, C.Joshi, W.B.Mori
SIMULATIONS FOR THE ELUCIDATION OF ELECTRON BEAM PROPERTIES IN LASER-WAKEFIELD ACCELERATION EXPERIMENTS VIA BETATRON AND SYNCHROTRON-LIKE RADIATION P.
Plasma Acceleration at IZEST: Large-Energy Laser and High-Average Power Laser toward High Energy Physics T. Tajima IZEST Joint Workshop of the France-Japan.
Magnetowave Induced Plasma Wakefield Acceleration for UHECR Guey-Lin Lin National Chiao-Tung University and Leung Center for Cosmology and Particle astrophysics,
1 1 Office of Science C. Schroeder, E. Esarey, C. Benedetti, C. Geddes, W. Leemans Lawrence Berkeley National Laboratory FACET-II Science Opportunities.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
Non Double-Layer Regime: a new laser driven ion acceleration mechanism toward TeV 1.
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
Prospects for generating high brightness and low energy spread electron beams through self-injection schemes Xinlu Xu*, Fei Li, Peicheng Yu, Wei Lu, Warren.
Testing Quantum Electrodynamics at critical background electromagnetic fields Antonino Di Piazza International Conference on Science and Technology for.
INSTITUTE OF APPLIED PHYSICS 2013 Exawatt Center for Extreme Light Studies Project (XCELS) A.G. Litvak, E.A. Khazanov, A.M. Sergeev Institute of Applied.
Ionization Injection E. Öz Max Planck Institute Für Physik.
Munib Amin Institute for Laser and Plasma Physics Heinrich Heine University Düsseldorf Laser ion acceleration and applications A bouquet of flowers.
GRK-1203 Workshop Oelde Watching a laser pulse at work
HHG and attosecond pulses in the relativistic regime Talk by T. Baeva University of Düsseldorf, Germany Based on the work by T. Baeva, S. Gordienko, A.
1 激光和对撞机 激光和对撞机 高能物理所 张 闯 强激光驱动的伽玛光源及关键技术与 伽玛核物理应用研讨会 2016 年 6 月 24 日.
1 1 Office of Science Strong Field Electrodynamics of Thin Foils S. S. Bulanov Lawrence Berkeley National Laboratory, Berkeley, CA We acknowledge support.
1 1 Office of Science Multiple Colliding EM pulses: Depletion of intense fields S. S. Bulanov 1, D. Seipt 2, T. Heinzl 3, M. Marklund 4 1 Lawrence Berkeley.
V.N. Litvinenko (SBU) C. Joshi, W. Mori (UCLA)
New concept of light ion acceleration from low-density target
SUPA, Department of Physics, University of Strathclyde,
8-10 June Institut Henri Poincaré, Paris, France
Opening: Miniworkshop on Plasma Astrophysics and Extreme High Energies
Studies of the energy transfer
Wakefield Accelerator
Astrophysical ZeV acceleration in the jets from an accreting blackhole
Control of laser wakefield amplitude in capillary tubes
All-Optical Injection
Peking University: Jinqing Yu, Ronghao Hu, Haiyang Lu & Xueqing Yan
Wakefields: Laser, toilet science, and gamma-ray bursts Toshi Tajima
EX18710 (大阪大学推薦課題) 課題代表者  矢野 将寛 (大阪大学大学院 工学研究科) 研究課題名
Presentation transcript:

MPQ Acknowledgments for Collaboration: G. Mourou, X. M. Zhang,Y. M. Shin, D. Farinella, T. Saeki, D. Farinella, N. Naumova, K. Nakajima, S. Bulanov, A. Suzuki, T. Ebisuzaki, J. Koga, X. Q. Yan, M. L. Zhang, U. Wienands, U. Uggerhoj, A. Chao, N.V. Zamfir, V. Shiltsev, M. Hogan, P. Taborek, K. Abazajian, G. Yodh, S. Barwick “TeV on a Chip” : X-ray Wakefield Accelerator in Nanomaterials Toshiki Tajima, UC Irvine Eur. Phys. J. Spec. Top. 228, 1037 (2014) APS DPF, Ann Arbor, MI,Aug. 7, 2015

Content High intensity frontiers of lasers: (1) large energy; (2) high fluence (CAN laser); (3) ultrashort (3) How short? ---- zeptoseconds New 2-step Laser Conversion: 1PW Opt. Laser  10PW Opt. Laser  1EW X-ray Laser 30fs, 40J, 1eV 3fs, 30J, 1eV 0.3as, 0.3J, 10keV LWFA at solid density enabled 10keV photon: n cr = /cc---- solid density n =10 23 /cc wakefield energy gain = 2mc 2 a 0 2 (n cr / n) = a 0 2 TeV X-ray crystal optics and nanostructure: Simulation study X-ray ( γ- ray) intensity scaling, radius, density scalings

Laser Wakefield (LWFA): nonlinear optics in plasma Kelvin wake Wave breaks at v < c No wave breaks and wake peaks at v≈c (The density cusps. Cusp singularity) (Plasma physics vs. String theory) ← relativity regularizes (relativistic coherence) Maldacena (string theory) method: ys QCD wake (Chesler/Yaffe 2008) Hokusai Maldacena

(when 1D theory applies) Theory of wakefield toward extreme energy In order to avoid wavebreak, a 0 < γ ph 1/2, where γ ph = (n cr / n e ) 1/2 dephasing lengthpump depletion length ← experimental ← theoretical n cr =10 21 (1eV photon) (10keV photon) n e = (gas) (solid)

PETAL Laser 7 PW Plasma Waveguide ~30 m LMJ target chamber 10m diameter Beam diagnostics IZEST proposes 100 GeV Ascent Experiment using 3.5 kJ, 500fs, 7 PW PETAL laser 3.5 kJ, 500fs, 7 PW PETAL laser IZEST proposes 100 GeV Ascent Experiment using 3.5 kJ, 500fs, 7 PW PETAL laser 3.5 kJ, 500fs, 7 PW PETAL laser K. Nakajima  Large Energy Laser Also considered: Rochester, LLNL, SIOM, etc.

G. Mourou, S. Mironov, E. Khazanov and A. Sergeev, Eur. Phys. J. Special Topics, 223, 1181(2014) Single-Cycle Laser Compressor w/thin film (first step) (G. Mourou) 1PW 10PW

Ultrarelativistic Mirror in the 3 -laser Regime (second step) Single cycle thin film compressor Single Cycle Thin Film Compressor 10PW, 2fs, 100J, 1  m 2 Intensity ~10 25 W/cm2 Single Cycle Thin Film Compressor 10PW, 2fs, 100J, 1  m 2 Intensity ~10 25 W/cm2 Critical Surface Moving at v ~c,  =10 3 Critical Surface Moving at v ~c,  =10 3  Pulse ~few zs Pulse Power ~ EW Wavelength ~ keV  =10 3  Pulse ~few zs Pulse Power ~ EW Wavelength ~ keV Overdense Plasma N. M. Naumova, J. A. Nees, I. V. Sokolov, B. Hou, and G. A. Mourou, Phys. Rev. Lett. 92, (2004). (G. Mourou)

1zs Even,isolated zeptosecond X-ray laser pulse possible (simulation by N. Naumova, I. Sokolov, G. Mourou, 2014)  1PW optical laser  10PW single osc. Optical laser  EW single osc. X-ray laser Consistent with “Intensity-pulse-width Conjecture” (Mourou-Tajima, Science 331 (2011))

Earlier works of X-ray crystal acceleration -X-ray optics and fields (Tajima et al. PRL,1987) -Nanocrystal hole for particle propagation (Newberger, Tajima, et al. 1989, AAC; PR,..) -particle transport in the crystal (Tajima et al. 1990, PA)

Porous Nanomaterial Porous alimina on Si substrate Nanotech. 15, 833 (2004); P. Taborek (UCI): porous alumina Nano holes: reduce the stopping power keep strong wakefields  Marriage of nanotech and high field science

UCI/Fermilab efforts on nanostructure wakefield acceleration 70th Birthday

X-ray laser with short length and small spot used according to proposal (G. Mourou) Laser pulse with small spot can be well controlled and guided with a tube. Such structure available e.g. with carbon nanotube, or alumina nanotubes (typical simulation parameters) X.M. Zhang (2015) Simulation of X-ray wakefield acceleration in nanomaterials tubes

Wakefield comparison between the cases of a tube and a uniform density uniform density case tube case X. M. Zhang

PIC simulation of X-ray wakefields in a nanomaterial tube: Density scaling 70th Birthday Photon energy = 1keV,tube radius = 5nm, a 0 =4, a few-cycled laser (around n cr / n = 200) X. M. Zhnag (2015)

Wakefield scaling to the X-ray laser amplitude X. M. Zhnag (2015)

Wakefields and the tube geometry X. M. Zhang (2015)

Wakefield on a chip toward TeV over cm (beam-driven) Y. Shin (2014)

Conclusions A new direction of ultrahigh intensity: zeptosecond lasers EW 10keV X-rays laser from 1PW optical laser X-ray LWFA in crystal: accelerating gradient 1-10TeV/cm, accelerating length 1-10m, energy gain per stage PeV; mini- accelerators (mm-m; portable) for GeV, TeV, PeV (and beyond) Crystal nanoengineering: s.a. nanoholes, arrays, focus optics Zeptosecond nano beams of electrons, protons (ions), muons (neutrinos), coherent γ -rays to very high energies over mm to m answering Suzuki’s Challenge(s) PIC (w/QED) simulation started to support the X-ray wakefields High energy gamma photons generated; photon signatures of wakefields Start of zeptoscience: ELI-NP zeptoproject (collaboration?)

Thank you! (Y.Shin)