Wednesday, Nov. 13, 2013 PHYS 3313-001, Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions.

Slides:



Advertisements
Similar presentations
CHAPTER 8 Hydrogen Atom 8.1 Spherical Coordinates
Advertisements

CHAPTER 7 The Hydrogen Atom
CHAPTER 7 The Hydrogen Atom
Monday, Oct. 15, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #12 Monday, Oct. 15, 2012 Dr. Jaehoon Yu The Schrödinger.
Monday, Nov. 11, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 11, 2013 Dr. Jaehoon Yu Alpha Particle.
Dr. Jie ZouPHY Chapter 42 Atomic Physics (cont.)
1 7.1Application of the Schrödinger Equation to the Hydrogen Atom 7.2Solution of the Schrödinger Equation for Hydrogen 7.3Quantum Numbers 7.4Magnetic Effects.
Quantum Theory of Hydrogen shrödinger's equation for hydrogen separation of variables “A facility for quotations covers the absence of original thought.”—
PHYS 3313 – Section 001 Lecture #17
PHYS 3313 – Section 001 Lecture #21
The Hydrogen Atom Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential Angular Momentum.
Monday, Nov. 5, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, Nov. 1, 2012 Dr. Jaehoon Yu Alpha Particle Decay.
The Hydrogen Atom continued.. Quantum Physics 2002 Recommended Reading: Harris Chapter 6, Sections 3,4 Spherical coordinate system The Coulomb Potential.
Monday, Oct. 22, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Monday, Oct. 22, 2012 Dr. Jaehoon Yu Infinite Potential.
Ch 9 pages Lecture 23 – The Hydrogen Atom.
Wednesday, April 22, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 22 Wednesday, April 22, 2015 Dr. Barry Spurlock.
Quantum mechanics unit 2
Lecture VIII Hydrogen Atom and Many Electron Atoms dr hab. Ewa Popko.
Lecture 20 Spherical Harmonics – not examined
Physics 451 Quantum mechanics I Fall 2012 Nov 5, 2012 Karine Chesnel.
An Electron Trapped in A Potential Well Probability densities for an infinite well Solve Schrödinger equation outside the well.
Wednesday, April 8, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, April 8, 2015 Dr. Jaehoon Yu Expectation.
1 PHYS 3313 – Section 001 Lecture #22 Monday, Apr. 14, 2014 Dr. Jaehoon Yu Barriers and Tunneling Alpha Particle Decay Use of Schrodinger Equation on Hydrogen.
Wednesday, Oct. 30, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #14 Wednesday, Oct. 30, 2013 Dr. Jaehoon Yu Infinite.
Physics 451 Quantum mechanics I Fall 2012 Nov 7, 2012 Karine Chesnel.
LECTURE 21 THE HYDROGEN AND HYDROGENIC ATOMS PHYSICS 420 SPRING 2006 Dennis Papadopoulos.
Wednesday, Oct. 17, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Wednesday, Oct. 17, 2012 Dr. Jaehoon Yu Properties.
Physics 2170 – Spring Hydrogen atom Next weeks homework should be available by 5pm today and is due next.
Monday, March 23, 2015PHYS , Spring 2014 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #13 Monday, March 23, 2015 Dr. Jaehoon Yu Bohr Radius.
Hydrogen Atom and QM in 3-D 1. HW 8, problem 6.32 and A review of the hydrogen atom 2. Quiz Topics in this chapter:  The hydrogen atom  The.
Physics 2170 – Spring Rest of semester Investigate hydrogen atom (Wednesday 4/15 and Friday 4/17) Learn.
Physics Lecture 14 3/22/ Andrew Brandt Monday March 22, 2010 Dr. Andrew Brandt 1.Hydrogen Atom 2.HW 6 on Ch. 7 to be assigned Weds 3/24.
Quantum mechanics unit 2
Monday, Nov. 12, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Monday, Nov. 12, 2012 Dr. Jaehoon Yu Quantum Numbers.
Physics 451 Quantum mechanics I Fall 2012 Nov 20, 2012 Karine Chesnel.
1 PHYS 3313 – Section 001 Lecture #23 Tuesday, Apr. 16, 2014 Dr. Jaehoon Yu Schrodinger Equation for Hydrogen Atom Quantum Numbers Solutions to the Angular.
1 PHYS 3313 – Section 001 Lecture #18 Monday, Mar. 31, 2014 Dr. Jaehoon Yu Valid Wave Functions Energy and Position Operators Infinite Square Well Potential.
Monday, April 6, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Monday, April 6, 2015 Dr. Jaehoon Yu Normalization.
Monday, April 27, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 23 Monday, April 27, 2015 Dr. Barry Spurlock Hydrogen.
Schrödinger’s Equation in a Central Potential Field
PHYS 3313 – Section 001 Lecture #18
2.1Application of the Schrödinger Equation to the Hydrogen Atom 2.2Solution of the Schrödinger Equation for Hydrogen 2.3Quantum Numbers 2.4Magnetic Effects.
Monday, Nov. 4, 2013PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #15 Monday, Nov. 4, 2013 Dr. Jaehoon Yu Finite Potential.
The Hydrogen Atom The only atom that can be solved exactly.
Wednesday, Nov. 7, 2012PHYS , Fall 2012 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #17 Wednesday, Nov. 7, 2012 Dr. Jaehoon Yu Solutions for.
Monday, April 13, 2015PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 19 Monday, April 13, 2015 Dr. Jaehoon Yu Refresher:
CHAPTER 5 The Hydrogen Atom
Wednesday, April 15, 2015 PHYS , Spring 2015 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture # 20 Wednesday, April 15, 2015 Dr. Jaehoon Yu Finite.
1 PHYS 3313 – Section 001 Lecture #20 Monday, Apr. 7, 2014 Dr. Jaehoon Yu 3D Infinite Potential Well Degeneracy Simple Harmonic Oscillator Barriers and.
Lectures in Physics, summer 2008/09 1 Modern physics 6. Hydrogen atom in quantum mechanics.
CHAPTER 7 The Hydrogen Atom
Review for Exam 2 The Schrodinger Eqn.
Quantum Theory of Hydrogen Atom
Schrodinger’s Equation for Three Dimensions
CHAPTER 7: Review The Hydrogen Atom
PHYS 3313 – Section 001 Lecture #17
The Hydrogen Atom The only atom that can be solved exactly.
PHYS 3313 – Section 001 Lecture #22
PHYS 3313 – Section 001 Lecture #17
 Heisenberg’s Matrix Mechanics Schrödinger’s Wave Mechanics
Quantum mechanics I Fall 2012
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #21
PHYS 3313 – Section 001 Lecture #22
Quantum Theory of Hydrogen Atom
PHYS 3313 – Section 001 Lecture #19
CHAPTER 7 The Hydrogen Atom
PHYS 3313 – Section 001 Lecture #18
PHYS 3313 – Section 001 Lecture #20
PHYS 3313 – Section 001 Lecture #17
Presentation transcript:

Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 1 PHYS 3313 – Section 001 Lecture #18 Wednesday, Nov. 13, 2013 Dr. Jaehoon Yu Solutions for Schrodinger Equation for Hydrogen Atom Quantum Numbers Principal Quantum Number Orbital Angular Momentum Quantum Number Magnetic Quantum Number Intrinsic Spin

Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 2 Announcements Reminder: homework #6 –CH6 end of chapter problems: 34, 39, 46, 62 and 65 –Due on Monday, Nov. 18, in class Reading assignments –CH7.6 and the entire CH8 Colloquium at 4pm in SH101

Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 3

Wednesday, Nov. 13, 2013 PHYS , Fall 2013 Dr. Jaehoon Yu 4

Solution of the Schrödinger Equation for Hydrogen Substitute  into the polar Schrodinger equation and separate the resulting equation into three equations: R ( r ), f ( θ ), and g (  ). Separation of Variables The derivatives in Schrodinger eq. can be written as Substituting them into the polar coord. Schrodinger Eq. Multiply both sides by r 2 sin 2 θ / Rfg Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu Reorganize

Solution of the Schrödinger Equation satisfies the previous equation for any value of mℓ.mℓ. The solution be single valued in order to have a valid solution for any , which requires m ℓ must be zero or an integer (positive or negative) for this to work Now, set the remaining equation equal to −mℓ2 −mℓ2 and divide either side with sin 2  and rearrange them as Everything depends on r the left side and θ on the right side of the equation. Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Solution of the Schrödinger Equation Set each side of the equation equal to constant ℓ(ℓ ℓ(ℓ + 1). –Radial Equation –Angular Equation Schrödinger equation has been separated into three ordinary second-order differential equations, each containing only one variable. Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Solution of the Radial Equation The radial equation is called the associated Laguerre equation, and the solutions R that satisfies the appropriate boundary conditions are called associated Laguerre functions. Assume the ground state has ℓ = 0, and this requires mℓ mℓ = 0.0. We obtain The derivative of yields two terms, and we obtain Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Solution of the Radial Equation Let’s try a solution where A is a normalization constant, and a0 a0 is a constant with the dimension of length. Take derivatives of R, we obtain. To satisfy this equation for any r, each of the two expressions in parentheses must be zero. Set the second parentheses equal to zero and solve for a0.a0. Set the first parentheses equal to zero and solve for E.E. Both equal to the Bohr’s results Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu Bohr’s radius Ground state energy of the hydrogen atom

Principal Quantum Number n The principal quantum number, n, results from the solution of R ( r ) in the separate Schrodinger Eq. since R ( r ) includes the potential energy V ( r ). The result for this quantized energy is The negative sign of the energy E indicates that the electron and proton are bound together. Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Quantum Numbers The full solution of the radial equation requires an introduction of a quantum number, n, which is a non-zero positive integer. The three quantum numbers: –n–n Principal quantum number –ℓ–ℓOrbital angular momentum quantum number –mℓ–mℓ Magnetic quantum number The boundary conditions put restrictions on these – n = 1, 2, 3, 4,... (n>0) Integer –ℓ = 0, 1, 2, 3,..., n − 1(ℓ < n) Integer –mℓ –mℓ = −ℓ, −ℓ + 1,..., 0, 1,..., ℓ − ℓ( |m ℓ | ≤ ℓ) Integer The predicted energy level is Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

What are the possible quantum numbers for the state n=4 in atomic hydrogen? How many degenerate states are there? Ex 7.3: Quantum Numbers & Degeneracy Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu nℓ mℓmℓ , 0, , -1, 0, +1, , -2, -1, 0, +1, +2, +3 The energy of a atomic hydrogen state is determined only by the primary quantum number, thus, all these quantum states, = 16, are in the same energy state. Thus, there are 16 degenerate states for the state n=4.

Hydrogen Atom Radial Wave Functions The radial solution is specified by the values of n and ℓ First few radial wave functions RnℓRnℓ Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Solution of the Angular and Azimuthal Equations The solutions for azimuthal eq. are or Solutions to the angular and azimuthal equations are linked because both have mℓmℓ Group these solutions together into functions ---- spherical harmonics Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Normalized Spherical Harmonics Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Show that the spherical harmonic function Y11(  ) satisfies the angular Schrodinger equation. Ex 7.1: Spherical Harmonic Function Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu

Solution of the Angular and Azimuthal Equations The radial wave function R and the spherical harmonics Y determine the probability density for the various quantum states. Thus the total wave function  (r,  ) depends on n, ℓ, and m ℓ. The wave function can be written as Wednesday, Nov. 13, PHYS , Fall 2013 Dr. Jaehoon Yu