H E A T P I P E S a n d T H E R M A L S O L U T IO N 2007. 3. 29 ESP 금속조립분과 세미나 히트파이프와 에너지 절감 방안 R & D Center DAEHONG Enterprise Co., Ltd. 2007. 3. 29.

Slides:



Advertisements
Similar presentations
Heat Transfer to Solids in a Flowing Fluid
Advertisements

Quiz – An organic liquid enters a in. ID horizontal steel tube, 3.5 ft long, at a rate of 5000 lb/hr. You are given that the specific.
Electronics Cooling MPE 635
Basic Refrigeration Cycle
Application of Steady-State Heat Transfer
Using Copper Water Loop Heat Pipes to Efficiently Cool CPUs and GPUs Stephen Fried President Passive Thermal Technology, Inc.
Heat Recovery for Commercial Buildings
AMESim Fan Drive Thermal Model
Chapter 2: Overall Heat Transfer Coefficient
CHE/ME 109 Heat Transfer in Electronics LECTURE 22 – ELECTRONICS COOLING MECHANISMS.
Cooling of Chips in Circuit Boards. Problem One way to cool chips mounted on circuit boards is to encapsulate the boards in metal frames that provide.
One-Dimensional Conduction Analysis of Thermal Barrier Coated Turbine Vanes Walter VanCleave.
External Flow: Flow over Bluff Objects (Cylinders, Sphere, Packed Beds) and Impinging Jets.
HEAT PIPES FOR CONTROL CAN THEY BE USED IN CHEMICAL REACTORS ETC?
1-D Steady Conduction: Plane Wall
COMMERCIAL REFRIGERATION
© Fluent Inc. 8/10/2015G1 Fluids Review TRN Heat Transfer.
CHE/ME 109 Heat Transfer in Electronics
Heat Pipes Heat Exchangers P M V Subbarao Professor Mechanical Engineering Department I I T Delhi Heat Exchange through Another Natural Action….
 Install new air cooled high efficiency screw chiller (variable speed)  Install new fan coils with ECM motors and low temperature heating coils and proper.
Shaun Heldt and Tyler Merrell. Background  Most common type of cooling method  Keeps CPU at a safe operating temperature  Has fan to improve overall.
Lecture Objectives: Model HVAC Systems –HW3 Asignemnet Learn about eQUEST software –How to conduct parametric analysis of building envelope.
Pharos University. جامعه فاروس Faculty of Engineering
Cooling design of the frequency converter for a wind power station
Objective Heat Exchangers Learn about different types
Heat Exchanger & Classification Prepared by: Nimesh Gajjar
STEADY HEAT TRANSFER AND THERMAL RESISTANCE NETWORKS
Outline (1) Heat Exchanger Types (2) Heat Exchanger Analysis Methods
Basics Air Flow Basics -Air is invisible -Everyone assumes adequate airflow -Frequently airflow is 30%-50% low -Cooling – 400 CFM per ton -Heating.
1 Denis Grondin / Julien Giraud – 01 December 2008 SLAB COOLING Denis Grondin Julien Giraud
CMS CO2 Test Stand Specifications and Installation Status Erik Voirin Fermilab PPD - Process Engineering Group CMS CO2 Cooling Test Stand1.
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Drugs Addicts Rehabilitation Center
Prepared by : Abd Aljabbar Rabaya Ammar Salloum Sameh Shawahni Supervisor : Dr. Eyad Assaf 1.
Electronics Enclosures
JCOV, 25 OCT 2001Thermal screens in ATLAS Inner Detector J.Godlewski EP/ATI  ATLAS Inner Detector layout  Specifications for thermal screens  ANSYS.
ERT 206/4 THERMODYNAMICS SEM 2 (2011/2012). light Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical.
Objective Discuss Expansion Valves and Refrigerants Heat Exchangers Learn about different types Define Heat Exchanger Effectiveness (ε)
Convection: Internal Flow ( )
Full Scale Thermosyphon Design Parameters and Technical Description Jose Botelho Direito EN/CV/DC 19 November, th Thermosyphon Workshop.
PRESENTATION OF CFD ACTIVITIES IN CV GROUP Daniel Gasser.
Heat Transfer Equations For “thin walled” tubes, A i = A o.
Lecture Objectives: Differences in Conduction Calculation in Various Energy Simulation Programs Modeling of HVAC Systems.
ERT 206/4 THERMODYNAMICS SEM 2 (2011/2012). light Energy can exist in numerous forms: Thermal Mechanical Kinetic Potential Electric Magnetic Chemical.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 8 Internal flow.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 7 External flow.
Heat Transfer Su Yongkang School of Mechanical Engineering # 1 HEAT TRANSFER CHAPTER 11 Heat Exchangers.
HCB 3- Chap 17B: HX Equipment1 Chapter 17B: HEAT EXCHANGER EQUIPMENT Agami Reddy (July 2016) Classification: indirect and direct types of HX Evaporator.
Energy and Heat. What is Energy? When something is able to change its environment or itself, it has energy Energy is the ability to change Energy has.
The Data Center Challenge
Date of download: 10/22/2017 Copyright © ASME. All rights reserved.
From: On Development of a Semimechanistic Wall Boiling Model
Date of download: 12/22/2017 Copyright © ASME. All rights reserved.
Date of download: 12/25/2017 Copyright © ASME. All rights reserved.
Chapter 5 The First Law of Thermodynamics for Opened Systems
Chapter 17B: HEAT EXCHANGER EQUIPMENT
Heat recovery feature Competitive approach
HCB 3-Chap 19A: All-Air Systems_Single Zone
Comparison between Serrated & Notched Serrated Heat Exchanger Fin Performance Presented by NABILA RUBAIYA.
Objectives Heat exchanger Dry HX vs. Vet HX (if we have time)
______________ Combustion Engine
CAPRI Cables Private Limited
Objectives Heat exchanger Dry HX vs. Vet HX (if we have time)
Convection.
Heat Transfer Coefficient
Heat Exchangers Heat Exchangers.
Heat Exchangers Heat Exchangers.
Heat Exchangers Heat Exchangers.
THERMAL ENERGY.
Chapter 17B: HEAT EXCHANGER EQUIPMENT
Presentation transcript:

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 히트파이프와 에너지 절감 방안 R & D Center DAEHONG Enterprise Co., Ltd

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Basic Equation Conduction Convection Design Method k, A, t, h Material Properties Geometry Cooling Conditions Cooling Devices Best Solution

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Sink k A h 5 ~ 7 25 ~ ~

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Heat Pipe Performance, k 1/ΔT ∝ K

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Heat Pipe Performance, k

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Operation of Heat Pipe

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Axial Groove Sintered Metal No Wick Wrapped Screen Homogeneous Wick Structures

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Composite Wick Structures Screen Covered Wick Composite Screen Artery Groove Artery Slab

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermosyphon g

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 What is it good for ? Transfers heat loads at very small temperature drops Precise isothermal control Has no moving parts and sealed unit Operates at any temperature from -420 ℃ to 2000 ℃ Can be constructed in almost any shape (tubes, flat plate, etc.) Can vary heat transfer (VCHP) Can only transfer heat in on direction (Diode)

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Working Fluid, Wick and Container Compatibility

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Operating Range

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Operating Range

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Figure of Merit ( )

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Temperature Distribution in Heat Pipes

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Circuit

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Operating Limits

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Variable Conductance Heat Pipe (VCHP) VCHP for Temperature Control of a Micro Wave Transmitter

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Miniature Heat Pipes

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Loop Heat Pipe (LHP)

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Disk Shape Heat Pipe Working temperature o C Size8 ”, 12” Working fluidFC Container materialaluminum Rangeless than 0.20 o C Surface treatmentanodizing

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Cross Flow type Heat Exchanger 열교환시 움직이는 부분 및 보조 동력이 없어 신뢰도가 높음. 고온유체와 저온유체간의 혼입 없이 분리 가능. HP 일부에서 문제가 발생해도 HPHE 는 계속 작동. 증발부와 응축부의 상대적인 길이를 변화시켜 온도 조절 가능

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Various Heat Pipes : Liquid Metal Heat Pipe

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Heat Pipe Heat Sink for IGBT in a Inverter or C/I System For a High Speed TrainFor a Subway Train

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (1) A theater located in the University of Malaya Medical Center The airflow changing rate in hospitals: 15 times/hr (ASHRAE) 27 times/hr (Malaysia) 40 times/hr (IRAN) Volume : 200 ㎥ Volume flow rate : 1.53 ㎥ /s Outdoor Air Temp. : 24 ~ 36 ℃ Outdoor RH : 30 ~ 660% Room Air Temp. : 23 ~ 24 ℃ Room RH : 46 ~ 60% Design Specification (YH Yau, Building Serv. Eng. Res. Technol. 27,4 (2006))

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (1) Plant A

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (1) Plant B

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (1) Plant C

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (2) Temperature ( ℃ ) Relative Humidity (%) A-LA-HB-LB-HC-LC-HA-LA-HB-LB-HC-LC-H Outdoor Air After Sensible HX After PHHX1 Evp After PHHX2 Evp After CWC After PHHX2 Con After HC Room Air After HPHX1 Con Simulation Results

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (1) Plant Additional External Static Pressure (Pa) Fan Power (kW) A17037,000 B32040,000 C64048,000 Plant Pre-heating Coil (KWh) Chiller (KWh) Heating Coil (KWh) Total (KWh) 증감 A22,000216,00094,000369,0000 B0190,00098,000328,000 41,000 (11%) C0142,00063,000253, ,000 (31%)

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (2) 현재 시스템 HPHX 적용 시스템

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (2) Total Heat Transfer Rate : 332 kW Exhaust Temperature of Hot Side : 117 ℃ Frontal Area : flow velocity 9.8 m/s Heat Transfer Rate per HP : 2.11 kW Heat Pipe Array : 18 X 10 Dimension of H/X : 0.9×1.6×1.0 m Pressure Drop : 1700 Pa = 12.8mmHg Design Specification (DAEHONG R & D Center)

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나 Thermal Design of HPHX (2) 회수 열량 : 332 kW 히트파이프 열교환기 : 7,000 만원 덕트 및 배관 비용 : 2,000 만원 기타 비용 : 1,000 만원 사용 시간 : 8 시간 / 일, 2920 시간 / 년 회수 비용 : -. 1 steam ton / 1hr = 800kW = 40,000 원 / hr kW = 16,600 원 / hr → 132,800 원 /day = 48,472,000 원 /year 회수 기간 : 2.06 년 (1 일 8 시간 기준 ) 0.69 년 (1 일 24 시간 작동 기준 )

H E A T P I P E S a n d T H E R M A L S O L U T IO N ESP 금속조립분과 세미나