Intelligent Database Systems Lab N.Y.U.S.T. I. M. A fast nearest neighbor classifier based on self-organizing incremental neural network (SOINN) Neuron.

Slides:



Advertisements
Similar presentations
Intelligent Database Systems Lab Presenter : WU, MIN-CONG Authors : KADIM TA¸SDEMIR, PAVEL MILENOV, AND BROOKE TAPSALL 2011,IEEE Topology-Based Hierarchical.
Advertisements

Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A 24-h forecast of solar irradiance using artificial neural.
Data Mining Classification: Alternative Techniques
Intelligent Database Systems Lab N.Y.U.S.T. I. M. local-density based spatial clustering algorithm with noise Presenter : Lin, Shu-Han Authors : Lian Duan,
Instance Based Learning
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Clustering data in an uncertain environment using an artificial.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A novel document similarity measure based on earth mover’s.
CS Instance Based Learning1 Instance Based Learning.
Introduction to Data Mining Engineering Group in ACL.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Fast exact k nearest neighbors search using an orthogonal search tree Presenter : Chun-Ping Wu Authors.
Data mining and machine learning A brief introduction.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Student : Sheng-Hsuan Wang Department.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Clustering-A neural network approach K.-L. Du NN, Vol.23,
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology U*F clustering : a new performant “ clustering-mining ”
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Human eye sclera detection and tracking using a modified.
Intelligent Database Systems Lab Presenter: MIN-CHIEH HSIU Authors: NHAT-QUANG DOAN ∗, HANANE AZZAG, MUSTAPHA LEBBAH 2013 NN Growing self-organizing trees.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 On-line Learning of Sequence Data Based on Self-Organizing.
Chapter 9 Neural Network.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A data mining approach to the prediction of corporate failure.
LOGO Ensemble Learning Lecturer: Dr. Bo Yuan
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Looking inside self-organizing map ensembles with resampling.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Miin-Shen Yang a*, Wen-Liang Hung b, De-Hua Chen a 2012, FSS Self-organizing map.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2008.NN.10 Modeling propagation delays in the development.
Machine Learning Neural Networks (3). Understanding Supervised and Unsupervised Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A self-organizing neural network using ideas from the immune.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Determining the best K for clustering transactional datasets – A coverage density-based approach Presenter.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 New Unsupervised Clustering Algorithm for Large Datasets.
Breast Cancer Diagnosis via Neural Network Classification Jing Jiang May 10, 2000.
Presenter : Lin, Shu-Han Authors : Jeen-Shing Wang, Jen-Chieh Chiang
Cube Kohonen Self-Organizing Map (CKSOM) Model
Intelligent Database Systems Lab N.Y.U.S.T. I. M. An IPC-based vector space model for patent retrieval Presenter: Jun-Yi Wu Authors: Yen-Liang Chen, Yu-Ting.
Intelligent Database Systems Lab Presenter : Chang,Chun-Chih Authors : Youngjoong Ko, Jungyun Seo 2009, IPM Text classification from unlabeled documents.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Exploiting Data Topology in Visualization and Clustering.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A k-mean clustering algorithm for mixed numeric and categorical.
Intelligent Database Systems Lab Presenter : Kung, Chien-Hao Authors : Medhdi Khashei, Mehdi Bijari 2011, ASOC A novel hybridization of artificial neural.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Externally growing self-organizing maps and its application to database visualization and exploration.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 The Evolving Tree — Analysis and Applications Advisor.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 2007.SIGIR.8 New Event Detection Based on Indexing-tree.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Extensions of vector quantization for incremental clustering.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. The application of SOM as a decision support tool to identify AACSB peer schools Presenter : Chun-Ping.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Graduate : Sheng-Hsuan Wang Authors :
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Rival-Model Penalized Self-Organizing Map Yiu-ming Cheung.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Regularization in Matrix Relevance Learning Petra Schneider,
On Utillizing LVQ3-Type Algorithms to Enhance Prototype Reduction Schemes Sang-Woon Kim and B. John Oommen* Myongji University, Carleton University*
Intelligent Database Systems Lab N.Y.U.S.T. I. M. 1 Visualization of multi-algorithm clustering for better economic decisions - The case of car pricing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology O( ㏒ 2 M) Self-Organizing Map Algorithm Without Learning.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Enhanced neural gas network for prototype-based clustering.
Fast Learning in Networks of Locally-Tuned Processing Units John Moody and Christian J. Darken Yale Computer Science Neural Computation 1, (1989)
Intelligent Database Systems Lab Presenter: CHANG, SHIH-JIE Authors: Luca Cagliero, Paolo Garza 2013.DKE. Improving classification models with taxonomy.
Chapter 13 (Prototype Methods and Nearest-Neighbors )
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Validity index for clusters of different sizes and densities Presenter: Jun-Yi Wu Authors: Krista Rizman.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 A self-organizing map for adaptive processing of structured.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Adaptive FIR Neural Model for Centroid Learning in Self-Organizing.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology A new data clustering approach- Generalized cellular automata.
Intelligent Database Systems Lab Presenter: NENG-KAI, HONG Authors: HUAN LONG A, ZIJUN ZHANG A, ⇑, YAN SU 2014, APPLIED ENERGY Analysis of daily solar.
CHAPTER 14 Competitive Networks Ming-Feng Yeh.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Self Organizing Maps and Bit Signature: a study applied.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Growing Hierarchical Tree SOM: An unsupervised neural.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Community self-Organizing Map and its Application to Data Extraction Presenter: Chun-Ping Wu Authors:
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Advisor : Dr. Hsu Presenter : Chien-Shing Chen Author: Gustavo.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Decision trees for hierarchical multi-label classification.
Mustafa Gokce Baydogan, George Runger and Eugene Tuv INFORMS Annual Meeting 2011, Charlotte A Bag-of-Features Framework for Time Series Classification.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. Learning Portfolio Analysis and Mining for SCORM Compliant Environment Pattern Recognition (PR, 2010)
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Self-organizing information fusion and hierarchical knowledge.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology 1 Investigating the Effect of Sampling Methods for Imbalanced.
Intelligent Database Systems Lab N.Y.U.S.T. I. M. A Cluster Validity Measure With Outlier Detection for Support Vector Clustering Presenter : Lin, Shu-Han.
Boosting Nearest-Neighbor Classifier for Character Recognition
Prepared by: Mahmoud Rafeek Al-Farra
Department of Electrical Engineering
Presentation transcript:

Intelligent Database Systems Lab N.Y.U.S.T. I. M. A fast nearest neighbor classifier based on self-organizing incremental neural network (SOINN) Neuron Networks (NN, 2008) Presenter : Lin, Shu-Han Authors : Shen Furao,, Osamu Hasegawa

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 2 Outline Introduction Motivation Objective Methodology Experiments Conclusion Comments

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 3 Introduction - self-organizing incremental neural network (SOINN) Distance: Too far Node = prototype

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 4 Introduction - self-organizing incremental neural network (SOINN) Link age

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 5 Introduction - self-organizing incremental neural network (SOINN) Age: Too old

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 6 Introduction - self-organizing incremental neural network (SOINN) Run two times Insert node if error is large Cancel Insertion if insert is no use

Intelligent Database Systems Lab N.Y.U.S.T. I. M. 7 Introduction - self-organizing incremental neural network (SOINN) Run two times Delete outlier: Nodes without neighbor (low-density assumption)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Motivation SOINN classifier (their first research in 2005)  Use 6 user determined parameters  Do not mentioned about noise  Too many prototypes  Unsupervised learning Their second research (in 2007) talk about these weakness 8

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Objectives Propose a Improved version of SOINN, ASC (Adjust SOINN Classifier)  FASTER: delete/less prototype  Training phase  Classification phase  CLASSIFIER: 1-NN (prototype) rule  INCREMENTAL LEARNING  ONE LAYER: easy to understand the setting, less parameters~  MORE STABLE: help of k-means 9

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 10 Distance: Too far A node is a cluster

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 11 Link age

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 12 Winner Neighbor

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 13 Age: Too old > a d

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 14 Delete outlier: Nodes without neighbor (low-density assumption)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – Adjusted SOINN 15 Lambda = iterations

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – k-means 16 Help of k-means clustering, k = # of neurons  Adjust the result prototypes: assume that each node nearby the centroid of class

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – noise-reduction 17 Help of k-Edit Neighbors Classifier (ENC), k=?  Delete the node which label are differs from the majority voting of its k- neighbors: assume that are generated by noise

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Methodology – center-cleaning 18 Delete neurons: if it has never been the nearest neuron to other class: assume that are lies in the central part of class

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Artificial dataset 19 dataset Adjusted SOINN ASC Error: same Speed: faster

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Artificial dataset 20 dataset Adjusted SOINN ASC Error: same Speed: faster

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Artificial dataset 21 dataset Adjusted SOINN ASC Error: better Speed: faster

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Artificial dataset 22 dataset Adjusted SOINN ASC Error: better Speed: faster

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Real dataset 23 Compression ratio (%) Speed up ratio (%)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Compare with other prototype-based classification method 24 Nearest Subclass Classifier (NSC) k-Means Classifier (KMC) k-NN Classifier (NNC) Learning Vector Quantization (LVQ)

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Experiments: Compare with other prototype-based classification method 25

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Conclusions ASC  Learns the number of nodes needed to determine the decision boundary  Incremental neural network  Robust to noisy training data  Fast classification  Fewer parameters: 3 parameters 26

Intelligent Database Systems Lab N.Y.U.S.T. I. M. Comments Advantage  Improve many things  A previous paper to demonstrate the thing they want to modify Drawback  NO Suggestion of parameters Application  A work from unsupervised learning to supervised learning 27