Real-Space Renormalization Approach to the Kubo- Greenwood Formula Chumin Wang Universidad Nacional Autónoma de México Universidad Nacional Autónoma de.

Slides:



Advertisements
Similar presentations
Lattice Dynamics related to movement of atoms
Advertisements

APRIL 2010 AARHUS UNIVERSITY Simulation of probed quantum many body systems.
Mechanisms of Terahertz Radiation Generation in Graphene Structures Institute for Nuclear Problems, Belarus State University, Belarus The XII-th International.
Lecture 1 Periodicity and Spatial Confinement Crystal structure Translational symmetry Energy bands k·p theory and effective mass Theory of.
Modelling of Defects DFT and complementary methods
Average Structure Of Quasicrystals José Luis Aragón Vera Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México. Gerardo.
Spin-orbit coupling in graphene structures D. Kochan, M. Gmitra, J. Fabian Stará Lesná,
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
Graphene: why πα? Louis Kang & Jihoon Kim
1 1.Introduction 2.Electronic properties of few-layer graphites with AB stacking 3.Electronic properties of few-layer graphites with AA and ABC stackings.
Modern Monte Carlo Methods: (2) Histogram Reweighting (3) Transition Matrix Monte Carlo Jian-Sheng Wang National University of Singapore.
L2:Non-equilibrium theory: Keldish formalism
1 Nonequilibrium Green’s Function Approach to Thermal Transport in Nanostructures Jian-Sheng Wang National University of Singapore.
Superconducting transport  Superconducting model Hamiltonians:  Nambu formalism  Current through a N/S junction  Supercurrent in an atomic contact.
No friction. No air resistance. Perfect Spring Two normal modes. Coupled Pendulums Weak spring Time Dependent Two State Problem Copyright – Michael D.
§5.6 §5.6 Tight-binding Tight-binding is first proposed in 1929 by Bloch. The primary idea is to use a linear combination of atomic orbitals as a set of.
Mesoscopic Anisotropic Magnetoconductance Fluctuations in Ferromagnets Shaffique Adam Cornell University PiTP/Les Houches Summer School on Quantum Magnetism,
Thermal Enhancement of Interference Effects in Quantum Point Contacts Adel Abbout, Gabriel Lemarié and Jean-Louis Pichard Phys. Rev. Lett. 106,
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Guillermina Ramirez San Juan
PHYS3004 Crystalline Solids
IV. Electronic Structure and Chemical Bonding J.K. Burdett, Chemical Bonding in Solids Experimental Aspects (a) Electrical Conductivity – (thermal or optical)
A semiclassical, quantitative approach to the Anderson transition Antonio M. García-García Princeton University We study analytically.
Crystal Lattice Vibrations: Phonons
Density of states and frustration in the quantum percolation problem Gerardo G. Naumis* Rafael A. Barrio* Chumin Wang** *Instituto de Física, UNAM, México.
Electron Entanglement via interactions in a quantum dot Gladys León 1, Otto Rendon 2, Horacio Pastawski 3, Ernesto Medina 1 1 Centro de Física, Instituto.
Project topics due today. Next HW due in one week
FUNDAMENTALS The quantum-mechanical many-electron problem and Density Functional Theory Emilio Artacho Department of Earth Sciences University of Cambridge.
CHAPTER 5 SECTION 5.3 INVERSE FUNCTIONS
Computational Solid State Physics 計算物性学特論 第9回 9. Transport properties I: Diffusive transport.
Physics “Advanced Electronic Structure” Pseudopotentials Contents: 1. Plane Wave Representation 2. Solution for Weak Periodic Potential 3. Solution.
Foundations Basics: Notation, and other things Algebraic manipulations Indices, Logs, Roots and Surds Binomial expansion Trigonometric functions Trigonometric.
Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
Computational Solid State Physics 計算物性学特論 第4回 4. Electronic structure of crystals.
Section 7.2 – The Quadratic Formula. The solutions to are The Quadratic Formula
Aim: What are the higher degree function and equation? Do Now: a) Graph f(x) = x 3 + x 2 – x – 1 on the calculator b) How many times does the graph intersect.
March 10, 2015Applied Discrete Mathematics Week 6: Counting 1 Permutations and Combinations How many different sets of 3 people can we pick from a group.
The Bandstructure Problem A one-dimensional model (“easily generalized” to 3D!)
Nonequilibrium Green’s Function and Quantum Master Equation Approach to Transport Wang Jian-Sheng 1.
1 Heat Conduction in One- Dimensional Systems: molecular dynamics and mode-coupling theory Jian-Sheng Wang National University of Singapore.
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
1 MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments The variational method.
Comp. Mat. Science School 2001 Lecture 21 Density Functional Theory for Electrons in Materials Richard M. Martin Bands in GaAs Prediction of Phase Diagram.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
1 Lecture VIII Band theory dr hab. Ewa Popko. 2 Band Theory The calculation of the allowed electron states in a solid is referred to as band theory or.
F. Sacconi, M. Povolotskyi, A. Di Carlo, P. Lugli University of Rome “Tor Vergata”, Rome, Italy M. Städele Infineon Technologies AG, Munich, Germany Full-band.
Physics “Advanced Electronic Structure”
The Bandstructure Problem A One-dimensional model (“easily generalized” to 3D!)
Liouville Dynamics and Classical Analogues of Information-Related Quantum Impossible Processes A.R. Plastino University of Pretoria, South Africa A.Daffertshofer.
Determination of surface structure of Si-rich SiC(001)(3x2) Results for the two-adlayer asymmetric dimer model (TAADM) are the only ones that agree with.
Statistical physics in deformed spaces with minimal length Taras Fityo Department for Theoretical Physics, National University of Lviv.
PA4311 Quantum Theory of Solids Quantum Theory of Solids Mervyn Roy (S6) www2.le.ac.uk/departments/physics/people/mervynroy.
Syed Ali Raza Supervisor: Dr. Pervez Hoodbhoy. A brief Overview of Quantum Hall Effect Spinning Disk Spinning Disk with magnetic Field Kubo’s Formula.
Kronig-Penney model and Free electron (or empty lattice) band structure Outline: Last class: Bloch theorem, energy bands and band gaps – result of conduction.
Introduction to Algorithms: Divide-n-Conquer Algorithms
INTEGRATION & TECHNIQUES OF INTEGRATION
Time Dependent Two State Problem
Introduction to Tight-Binding
Solids: From Bonds to Bands
Condensed Matter Physics: review
National University of Singapore
Band-structure calculation
Phase diagram of s-wave SC Introduction
The Nuts and Bolts of First-Principles Simulation
A One-Dimensional Bandstructure Model
Bandstructure Problem: A One Dimensional Model
Applied Discrete Mathematics Week 9: Integer Properties
Dynamical mean field theory: In practice
Group theory for the periodic lattice
Quantum One.
Presentation transcript:

Real-Space Renormalization Approach to the Kubo- Greenwood Formula Chumin Wang Universidad Nacional Autónoma de México Universidad Nacional Autónoma de México

Outlines - Introduction 1.- Macroscopic scale analysis 2.- Kubo-Greenwood formula 3.- Real-space renormalization 4.- Convolution technique - Electronic Transport in Quasicrystals 1.-Transparent states in mirror Fibonacci chains 2.-Power-law localization nature 3.- Quantized electrical conductance - Conclusions

Solid State Physics SystemCrystalQuasicrystal Amorphous Structure Symmetry Translational Long range order Short range order Wave Function Extended CriticalLocalized A typical macroscopic sample contains atoms, the possibility of solving all the quantum equations in full detail is truly remote.

Macroscopic Scale Analysis 1. Reciprocal Space - Bloch theorem: - First Brillouin zone: contains all the quantum states. 2. Real-Space Renormalization - Consists in reducing the degree of freedom of the system, but conserving their exact participation in the final solution of the problem. There are essentially two options:

Fibonacci Sequence The simplest quasiperiodic lattice: …-A-B-A-A-B-A-B-A-… Fibonacci Chain 1.Projection method: sites in the window 2.Inflation method: A A-B and B A, for example: A-B A-B-A A-B-A-A-B … 3.Addition method: f(n) = f(n-1)  f(n-2), for instance: f(1)=A, f(2)=A-B f(3)=A-B-A.  Equivalence: Given  a linear operator of inflation, i.e.,  (B)=A,  (A)=A-B, f(1)=  (B) and f(2)=   (B)=  (B))=A-B, therefore,  n (B)=  n-1 (A)=  n-2 (AB)=  n-2 (A)  n-2 (B)=  n-1 (B)  n-2 (B). …-B-A-A-B-A-A-B-A-A-B-… Mirror Fibonacci Chain

Bond Problem Let us consider an s-band tight-binding Hamiltonian:

Renormalization of the DOS where D 1 (z,n)= D 1 (z,n-1)+[  1 (z,n)] 2 [D 1 (z,n-2)+ D 2 (z,n-1)-1]+  1 (z,n)D 3 (z,n-1), D 2 (z,n)= D 2 (z,n-2)+[  2 (z,n)] 2 [D 1 (z,n-2)+ D 2 (z,n-1)-1]+  2 (z,n)D 3 (z,n-2), D 3 (z,n)=  2 (z,n)D 3 (z,n-1)+  1 (z,n) D 3 (z,n-2)+2  2 (z,n)  1 (z,n)[D 1 (z,n-2)+D 2 (z,n-1)-1], D 4 (z,n)= D 4 (z,n-1)+D 4 (z,n-2)+  0 (z,n)[ D 1 (z,n-2)+D 2 (z,n-1)-1],  0 (z,n)=[z - E R (z,n-1) - E L (z,n-2)] -1  1 (z,n)= t(z,n-1)  0 (z,n),  2 (z,n)= t(z,n-2)  0 (z,n). The density of states (DOS) can be written as

where Kubo-Greenwood Formula V. Sánchez, L.A. Pérez, R. Oviedo-Roa, and C. Wang, Phys. Rev. B 64, (2001).

Green’s Function The Dyson’s equation:

Convolution Theorem W.A. Schwalm and M.K. Schwalm, Phys. Rev. B 37, 9524 (1988).

Computing Efficiency Computing time of the Kubo-Greenwood formula for tapes of 4  N atoms, being N a Fibonacci number, through 3 methods: by direct calculation of the Green's function (open squares), using 1D inversion+convolution (open triangles) and by means of the renormalization+convolution method (open circles). The numerical computations are performed on a Silicon Graphics O2 workstation with a MIPS R12000 microprocessor.

Transparent States Fibonacci chain contains atoms with semi-infinite leads, t A /t B =0.9, Im(E)= |t|

Power-Law Localization

Quantized Conductance

Quantization in Nano Systems (a) R. de Picciotto, et al., Nature 411, 51 (2001). (b) A. Urbina, et al., Phys. Rev. Lett. 90, (2003).

Conclusions The real-space renormalization method seems to be a very efficient manner to study non periodic systems. The results reveal interesting features of the electronic transport, such as quantized conductance, multiple transparent states in mirror Fibonacci lattices and the power-law localization nature. For cubic-like structures, combining with the convolution theorem, the Kubo-Greenwood formula can be evaluated in an exact way for multidimentional quasiperiodic lattices.

Método de Corte y Proyección Sea un operador de proyección: Como y mRmRm R m -R m-1 1 2A 3B 4A

Estado Transparente donde Transmitancia del sistema [ ] es uno cuando x = 1, es decir, para generaciones n = 1, 4, 7,...

Soluciones Analíticas - Red cuadrada periódica: - Cadena periódica:

Generador de Armónicos Multicapas cuasiperiódicas de ferroeléctricos (LiTaO 3 ) S. Zhu, et al., Science 278, 843 (1997).