Sulfur, manganese … in the Galaxy

Slides:



Advertisements
Similar presentations
T.P. Idiart  and J.A. de Freitas Pacheco   Universidade de São Paulo (Brasil)  Observatoire de la Côte d’Azur (France) Introduction Elliptical galaxies.
Advertisements

Martin Asplund Galactic archeology & planet formation.
Martin Asplund, Paul Barklem, Andrey Belyaev, Maria Bergemann,
Tycho’s SNR – Obs ID 115 ds9 analysis by Matt P. & Leah S. PURPOSE: To use ds9 software to analyze the X-ray spectrum of the Tycho Supernova Remnant, determine.
Near-Infrared Spectral Properties of Metal-Poor Red Supergiants Valentin D. Ivanov (ESO) Collaborators: Marcia J. Rieke, A. Alonso- Herrero, Danielle Alloin.
Stars science questions Origin of the Elements Mass Loss, Enrichment High Mass Stars Binary Stars.
Non-LTE abundance analysis: K & Sc Huawei Zhang Department of Astronomy, School of Physics, Peking University.
Compilation of stellar fundamental parameters from literature : high quality observations + primary methods Calibration stars for astrophysical parametrization.
Observations of Neutron-Capture Elements in the Early Galaxy Chris Sneden University of Texas at Austin.
Construction and Evolution of the Galaxy Where do the dwarf galaxies fit in? Matthew Shetrone February 26, 2009.
Outline  Introduction  The Life Cycles of Stars  The Creation of Elements  A History of the Milky Way  Nucleosynthesis since the Beginning of Time.
Exploring the orbits of the stars from a blind chemical tagging experiment Borja Anguiano Macquarie University, Sydney, Australia.
Atmospheric tomography of supergiant stars (starring μ Cep) Alain Jorissen, Sophie Van Eck, Kateryna Kravchenko (Université Libre de Bruxelles) Andrea.
Chemical composition of the stars in the substructures of the Galaxy (-1 0.3) Mishenina T.V. 1 -Astronomical Observatory of Odessa National University,
N.S. Polosukhina 1, A. Shavrina 2, N.A. Drake 3,4, V. Tsymbal 5, M. Hack 6, P. North 7, V. Khalack 2, J. Zverko 8, J. Žižnovsky 8, Ya. Pavlenko 2 1 Crimean.
The chemical composition of MCP star HD YUSHCHENKO VOLODYMYR Odessa National University, Ukraine.
Supernovae, Nucleosynthesis, and Constraints on Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago and.
{ SDSS Timothy C. Beers National Optical Astronomy Observatory The AEGIS Survey (and more …)
Spectral Investigations of Cepheids in Southern Hemisphere Scientifical Seminar KOLOS
Lecture 10 Metalicity Evolution Simple models for Z(  ( t ) ) (Closed Box, Accreting Box, Leaky Box) Z = - y ln(  ) = y ln( 1 /  ) “G dwarf problem”
Small-scale heros: massive-star enrichment in ultrafaint dSphs Andreas Koch D. Adén, S. Feltzing (Lund) F. Matteucci (Trieste) A. McWilliam (Carnegie)
Non-LTE in Stars The Sun Early-type stars Other spectral types.
化学組成に刻まれた Ia 型超新星の多様 性 辻本拓司 ( 国立天文台 )  chemical imprint on stars of supernova nucleosynthesis in general, the issue about Type II supernovae  prompt.
Presolar grains and AGB stars Maria Lugaro Sterrenkundig Instituut University of Utrecht.
SALTLIB Proposal for a Stellar Spectral Library using H. P. Singh, Department of Physics & Astrophysics University of Delhi, Delhi – ,
Chapter 14 – Chemical Analysis Review of curves of growth How does line strength depend on excitation potential, ionization potential, atmospheric parameters.
High Resolution Spectroscopy of Stars with Planets Won-Seok Kang Seoul National University Sang-Gak Lee, Seoul National University Kang-Min.
Chapter 16 – Chemical Analysis Review of curves of growth –The linear part: The width is set by the thermal width Eqw is proportional to abundance –The.
Lecture 2: Formation of the chemical elements Bengt Gustafsson: Current problems in Astrophysics Ångström Laboratory, Spring 2010.
Abundance patterns of r-process enhanced metal-poor stars Satoshi Honda 1, Wako Aoki 2, Norbert Christlieb 3, Timothy C. Beers 4, Michael W.Hannawald 2.
Fuerteventura, Spain – May 25, 2013 Physical parameters of a sample of M dwarfs from high- resolution near-infrared spectra Carlos del Burgo Collaborators:
1 New Spitzer Results for Neon and Sulphur in NGC 6822 Reggie Dufour AU 10/07/2009.
Anna Frebel University of Texas at Austin
Abundance Patterns to Probe Stellar Nucleosynthesis and Chemical Evolution Francesca Primas.
The Galactic Habitable Zone Guillermo Gonzalez Iowa State University Fermilab August 21, 2002 Acknowledgements: Don Brownlee Peter Ward.
Oscar A. Gonzalez PhD ESO-Garching 3rd Subaru conference: Galactic Archaeology, Deep field and the formation of the Milky Way, Japan, 2011.
A cosmic abundance standard Fernanda Nieva from massive stars in the Solar Neighborhood Norbert Przybilla (Bamberg-Erlangen) & Keith Butler (LMU)
HST Observations of Low Z Stars HST Symposium, Baltimore May 3, 2004 Collaborators: Tim Beers, John Cowan, Francesca Primas, Chris Sneden Jim Truran.
1 Arcturus Exposed: Non-LTE Analysis of Carbon and Oxygen Abundances in Arcturus By: Jayme Derrah Supervisor: Dr. Ian Short AUPAC 2007.
Abundances of Refractory Elements for Planet-Host Stars Lee, Sang-Gak Seoul National University Kim, Kang-Min Korea Astronomy and Space Science Institute.
Chemical Composition of Planet-Host Stars Wonseok Kang Kyung Hee University Sang-Gak Lee Seoul National University.
AIMS OF G ALACTIC C HEMICAL E VOLUTION STUDIES To check / constrain our understanding of stellar nucleosynthesis (i.e. stellar yields), either statistically.
T HE Y AND B A ABUNDANCES IN THE OPEN CLUSTER STARS T.V. Mishenina 1, S.A. Korotin 1, G. Carraro 2,3, V.V. Kovtyukh 1, and I.A. Yegorova 2 1 -Astronomical.
On the Stark broadening of Cr II spectral lines in atmospheres of DB white dwarfs Z. Simić 1, M. S. Dimitrijević 1,2, A. Kovačević 3, S. Sahal-Bréchot.
Monitoring of the Yellow Hypergiant Rho Cas: Results of the High-Resolution Spectroscopy During V.G. Klochkova (SAO RAS, Nizhnij Arkhyz, Russia)
New observations of the CP stars in the spectral regions of Li I 6708 Å and 6104 Å lines with the 6m BTA telescope N. Polosukhina 1, D. Kudryavtzev 2,
Dr. Alan Alves-Brito ARC Super Science Fellow Red giant stars as tracers of the chemical evolution of the Galactic bulge.
Milky Way thin disk. Q: in order to study the spatial distribution of the thin disk (which dominates the Milky Way luminosity) surface photometry in the.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
Stellar Spectroscopy and Elemental Abundances Definitions Solar Abundances Relative Abundances Origin of Elements 1.
“Why are massive O-rich AGB stars in our Galaxy not S-stars?” D. A. García-Hernández (IDC-ESAC, Madrid, Spain) In collaboration with P. García-Lario (IDC-ESAC),
FUSE spectroscopy of cool PG1159 Stars Elke Reiff (IAAT) Klaus Werner, Thomas Rauch (IAAT) Jeff Kruk (JHU Baltimore) Lars Koesterke (University of Texas)
Chemical Compositions of Stars from IGRINS Spectra; the Good, the Risky, and the Ugly some comments on the uses and abuses of ordinary stellar abundance.
The Cecilia Payne-Gaposchkin Lecture Center for Astrophysics May 9, 2002.
Fluorine in RCB and EHe Stars. ► RCB stars comprise a sequence of H-deficient supergiants with effective temperatures from about 3500 K, as represented.
The High Redshift Universe Next Door
ATOMIC DATA AND STARK BROADENING OF Nb III Zoran Simić Milan S. Dimitrijević Luka Č. Popović Astronomical Observatory Belgrade, 11060, Serbia.
A comprehensible trace of formation and chemical enrichment of a given stellar system involves the built of several chemical diagrams describing the evolution.
Holtzman: General interests ● Stellar populations – Solar neighborhood star formation history – Local group dwarf star formation histories – M33 star formation.
Hobby-Eberly Telescope Chemical Abundances of Stars in the Halo (CASH) Project: Spectroscopic Analyses of the First ~80 Stars 5 May 2010 Julie Krugler.
Abundance analysis on Late G giants — 59 stars of Xinglong Planet search sample Yujuan Liu( 劉玉娟 ) NAOC/NAOJ Ando H., G. Zhao, Sato Bun’ei, Takeda Y.,
Chemical enrichment mechanisms in Omega Centauri:
Radioactive elements in metal deficient stars
R-PROCESS SIGNATURES IN METAL-POOR STARS
Determining Abundances
Mysterious Abundances in Metal-poor Stars & The ν-p process
Chapter 16 – Chemical Analysis
Lecture 11: Age and Metalicity from Observations
Galactic Astronomy 銀河物理学特論 I Lecture 3-4: Chemical evolution of galaxies Seminar: Erb et al. 2006, ApJ, 644, 813 Lecture: 2012/01/23.
Presentation transcript:

Sulfur, manganese … in the Galaxy Mishenina T.V., Gorbaneva T.I., Paramonova O.P., Basak N.Yu., Kovtyukh V.V., Korotin S.A., Chekhonadskih F. +…… Odessa Astronomical Observatory +…. Preliminary plan 2014-2016 Workshop "Heavy elements nucleosynthesis and galactic chemical evolution". September 8 – September 11, 2013 Moscow, Russia

Aims (sulfur): Abundance of sulfur shows a larger scatter than other alpha-elements (Luck et al., 2011; Lemasle et al. 2013). This is certainly due to the fact that sulfer abundances are based on typically 2-4 lines in IR region of spectra, which are subject to significant NLTE departures. It would be very important to reduce the scatter and to ascertain the sulfur abundances in Cepheids and dwarfs in the Galactic disc. This would enable us a sulfur abundance gradient in the disk using Cepheids. The distribution of sulfur in the disc dwarfs allows to trace the evolution of sulfur (to estimate the different sources of S production) at all ages of the disc stars.

Aims (manganese): Manganese is an element of the iron peak The behavior of Mn is inverse to that of alpha-elements (Wallerstein, 1962, Gratton 1989) and differs from that of iron group elements. SN II and SN Ia in different proportion as the main sources of Mn production. The behavior of manganese in the thick and the thin disc of the Galaxy allows us to consider some sources of they production and to precise its contribution in manganese enrichment.

Preliminary results for Sulfur and Manganese The spectra of stars were obtained with S/N about 100-350 using the 1.93 m telescope at the Observatoire de Haute-Provence (OHP, France), equipped with the echelle-spectrograph s ELODIE (Barrane et al., 1996ж; a resolving power is R = 42 000) and SOPHIE (Perruchot et al., 2008), a resolving power is R = 75 000). The spectral processing was carried out using the processing codes (Katz et al., 1998; Galazutdinov, 1992). The parameters of the investigated stars were taken from our earlier studies ( e.g.Mishenina et al. 2013).

Sulfur abundance The abundances of sulfur were obtained for 27 dwarfs under the LTE approximations upon the synthetic spectrum method, taking into account the HFS and the oscillator strengths of lines by Korotin (2009). The Kurucz model of atmospheres (Kurucz, 1993) and the new version of the STARSP code by Tsymbal (1996) were used. We used for the sulfur and iron abundance determination the lines in the visual region (of 6743-6762 ÅÅ). The NLTE corrections for those lines did not exceed -0.1 dex (Korotin, 2009).

The observed and synthetic spectra fitting for star HD108954

The model predictions by Timmes, Woosley&Weaver (1995) and the data of other authors (our data – as asterisks, Clegg et al. 1981 – as triangles, Francois 1987, 1988 – as squares and circles). The production of all stable sulfur isotopes in the massive-star models is sufficient to explain the solar abundance (Timmes et al. 1995) ???

Sulfur for Cepheids 250 Cepheids VLT (ESO) + McDonald (USA) HFS + NLTE approximation using a 65-level model of the SI atom (Korotin S., 2009) (Visual + IR)

Manganese The observations from ELODIE and SOPHIE (1.93m, OHP, France) for 200 dwarfs of the thin and thick disk stars HFS from (Prochaska et al., 2000) LTE, the new version of the STARSP code by V. Tsymbal Maximum NLTE correction about +0.1 dex for solar metallicity (Bergemann & Gehren, 2007), the program DETAIL (Butler & Giddings 1985), the model atom - 245 and 213 levels for Mn I and Mn II, respectively 0.2-0.5 dex for low metallicity (-1 -- -2 dex) (Bergemann & Gehren, 2008).

The observed and synthetic spectra fitting

Thin disk – as magenta, thick disc –as black squares, Hercules stream - as green triangles

Comparison with the data of other authors: black circles (Reddy et al Comparison with the data of other authors: black circles (Reddy et al. 2006); triangles (Nissen 2011); open circles (Feltzing et al. 2007); and asterisks (our data).

Timmes et al. (1995): Inclusion of nucleosynthesis from Type Ia supernovae improves the fit to the solar abundance of Mn.???

Trend of [Mn/Fe] vs. [Fe/H] Different assumptions are invoked to explain the trends: 1)a Mn overproduction with respect to Fe in supernovae of type Ia (Prochaska & McWilliam 2000; Nissen et al. 2000; Sobeck et al. 2006); 2) metallicity dependent yields from type II supernovae (McWilliam et al. 2003) New Mn nucleosynthesis results and new models of the chemical evolution! .

Detailed analysis of four stars with different metallicity Spectrograph SOPHIE (http://www.obs-hp.fr/www/guide/sophie/sophie-info.html R=75000, λλ 3872-6943 Å Å Now, we have redefined the parameters and focused our attention on the lines of the elements produced in the process of neutron captures WIDTH9 by Kurucz R. LTE approximation, EWs FeI, FeII, YII, ZrI, ZrII, LaII, CeII, PrII, NdII, SmII, GdII

Parameters of studied stars HD V Sp   S/N Teff (K) log g ξ (km s-1) [Fe/H] 6582 5.1 G5Vb Double or multiple star 321 5330 4.35 0.4 -0.86 19445 8.1 A4p Variable Star 102 5950 4.1 1.3 -1.99 84937 8.3 sdF5 High proper-motion Star 148 6200 3.8 1.6 -2.15 170153 3.6 F7V 317 6160 4.0 0.9 -0.57

Selection of lines ElEMENT Number of lines min max Fe I 475 846 Fe II 51 83 Y II 11 23 Zr I Zr II 9 19 La II 7 25 Ce II 5 57 Pr II 4 22 Nd II 73 Sm II 46 Gd II 1 12 Parameters of line from VALD (Piskunov et al. 1995; Kupka et al. 1999), for Ce II also from Lawler et al. (2009). Lawler J. E. et al.: 2009, Astrophys. J. Suppl., 182, 51.

Element abundances HD6582 HD19445 HD84937 HD170153 [X/H]  N lg [X/Fe] Fe I -0.86 0.1 846 6.64 -1.99 0.11 539 5.51 0  -2.15 475 5.35 -0.57 802 6.93 Fe II -0.87 0.07 63 6.63 -0.01 -2 0.13 55 5.5 -0.01  -2.14 51 5.36 0.01  -0.58 83 6.92 Y II 22 1.35 -2.07 11 0.14 -0.08 -2.2 12 0.01 -0.05 -0.66 23 1.55 -0.09 Zr I -0.75 0.06 1.83   -0.56 5 2.02 Zr II -0.71 0.05 19 1.87 0.15 -1.76 10 0.82 0.23 -1.93 9 0.65 0.22 -0.52 18 2.06 La II -0.76 0.34 -1.8 0.09 8 -0.7 0.19 -1.9 7 -0.8 0.25 -0.5 0.08 25 0.6 Ce II -0.83 57 0.75 0.03 -1.58 0.41 -1.79 -0.21 0.36 52 1.08 Pr II -0.72 -1.15 -0.43 0.84 -1.51 0.02 4 -0.79 0.64 -0.55 0.17 Nd II 72 0.66 -1.64 0.12 15 -0.22 0.35 -0.34 0.39 73 0.9 Sm II -0.65 46 0.31 0.21 -1.28 -0.32 0.71 -1.45 -0.49 0.7 -0.45 41 0.51 Gd II -0.62 0.45 0.24 -1.31 1 <-0.24 0.68 -1.53 3 <-0.46 0.62 -0.47

Behavior of the element abundances in the atmospheres of the Sun and of investigated stars

Plan (2014) Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.) Galactic abundance gradients from Cepheids: NLTE abundance of Sulphur.  Mishenina T.V., (Pignatari M., Gorbaneva T.I.) Determination of Mn abundances in the sample of thin and thick disk stars for study of the sources of Mn production and Mn Chemical evolution. Chekhonadskikh F., (Kovtyukh V.V.) Abundances of double-mode Cepheids from high-resolution echelle spectroscopy.  Korotin S.A. NLTE analysis of C, O, Na, Mg for 60 F supergiants . Andrievsky S.M., Korotin S.A, (Kovtyukh V.V.) Oxygen NLTE abundance distribution in the central part of the Galactic disc. Yushchenko V. The most detailed elemental abundance pattern in RM 1-667-stars of SMC Analysis of radioactive elements (Th). Mishenina T.V., (Basak N.Yu.) The detailed investigation of 10 stars as standard stars in the region of metallicity [Fe/H] from -0.8 to -3 dex.  

Plan (2015) Chekhonadskikh F., Korotin S.A, (Kovtyukh V.V.) Galactic abundance gradients from Cepheids: NLTE analyze of alpha-elements. Mishenina T.V., (Paramonova O.P.) Determination of Sulfur abundances in the thin and thick disk stars for study the sources of its production Chekhonadskikh F., (Kovtyukh V.V.) FGK Supergiants: elemental abundances and their implementation for the stellar and galactic evolution. Yushchenko V. Determination of the Th abundance in HD204543 by synthesis method.  Mishenina T.V., Korotin S.A., (Kovtyukh V.V.) Enrichment with alpha- and neutron capture elements of open cluster stars. Andrievsky S.M., Korotin S.A. Silicon abundance problem in B stars.

Plan (2016) Chekhonadskikh F., (Kovtyukh V.V.) Galactic abundance gradients from FGK supergiants: alpha-elements.  Mishenina T., (Kovtyukh V.V., Usenko I.) Light and heavy elements in the stars of the Southern sky (thick disk). Korotin S.A., Andrievsky S.M., (Kovtyukh V.V.) NLTE analysis of Ca for supergiants. Yushchenko V. Investigation of Ba-type stars.  Mishenina T.V., Korotin S.A., (Kovtyukh V.V.) Enrichment with alpha- and neutron capture elements of globular cluster stars. Andrievsky S.M., Korotin S.A. Europium NLTE abundance distribution in Galactic disc.

Thank you!