129 Xe magnetometry for KEK-RCNP neutron EDM measurements M. Mihara, K. Matsuta (Osaka Univ.) Y. Masuda, S.C. Jeong, Y.X. Watanabe, S. Kawasaki (KEK) K.

Slides:



Advertisements
Similar presentations
Search for the Schiff Moment of Radium-225
Advertisements

HATTIE RING PRESENTATION FOR PHYS 250 4/22/2008 Magnetometry.
Nonlinear Magneto-Optical Rotation with Frequency-Modulated Light Derek Kimball Dmitry Budker Simon Rochester Valeriy Yashchuk Max Zolotorev and many others...
Lecture 2 1 H Nuclear Magnetic Resonance. Gas Chromatograph of Molecular Hydrogen at –100 °C Thermoconductivity Detector 12.
NMR Nuclear Magnetic Resonance Spectroscopy. Over the past fifty years nuclear magnetic resonance spectroscopy, commonly referred to as nmr, has become.
NMR: Theory and Equivalence. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc.
Intense Field Femtosecond Laser Interactions AMP TalkJune 2004 Ultrafast Laser Interactions with atoms, molecules, and ions Jarlath McKenna Supervisor:
Another Route to CP Violation Beyond the SM – Particle Dipole Moments Dave Wark Imperial/RAL WIN05 Delphi June 10, 2005.
Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg) Collaborators:
The cryogenic neutron EDM experiment at ILL and the result of the room temperature experiment James Karamath University of Sussex.
Lepton Moments 2014 Craigville 07/22/2014 P. Schmidt-Wellenburg PSI Searching for the electric dipole moment of the neutron.
Study of the Time-Reversal Violation with neutrons
Nonlinear Magneto-Optical Rotation with Frequency-Modulated Light Derek Kimball Dmitry Budker Simon Rochester Valeriy Yashchuk Max Zolotorev and many others...
Experimental Atomic Physics Research in the Budker Group Tests of fundamental symmetries using atomic physics: Parity Time-reversal invariance Permutation.
Optically Pumping Nuclear Magnetic Spin M.R.Ross, D.Morris, P.H. Bucksbaum, T. Chupp Physics Department, University of Michigan J. Taylor, N. Gershenfeld.
SPIN 2004 Oct. 14, 2004 W. Kim, S.S. Stepanyan, S. Woo, M. Rasulbaev, S. Jin (Kyungpook National University) S. Korea Polarization Measurements of the.
Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg) KEK-TRIUMF.
Detection of 3He with SQUIDs. Experimental parameters For B=300 Gauss The expected signal is 220 fT (specific geometry is taken into account), while the.
T. Inoue, 1 T. Nanao,1 M. Tsuchiya, 1 H. Hayashi, 1 T. Furukawa, 1 A. Yoshimi, 2 M. Uchida, 1 H. Ueno, 2 Y. Matsuo, 2 T. Fukuyama, 3 and K. Asahi 1 1 Tokyo.
Present Status of feasibility study on Polarized 3 He Ion Source Yasuhiro Sakemi: 2003-October-20 Optical Pumping To Injector (AVF Cyclotron) 3 He Atoms.
Electric Dipole Moment of Neutron and Neutrinos
Feasibility Check / How to test EquipmentsStatusCostDateCommentsContact Polarized 3 He atomsCell for transfer design / LKB, Paris/MainzSspm.e. optical.
DHB, nEDM Collab. Mtg, 15/16 Apr 04 UIUC Test System (Beck, Chandler, Hertzog, Kammel, Newman, Peng, Sharp, Williamson, Yoder; Blackburn, Kenyon, Thorsland)
Search for an Atomic EDM with
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
A Portable Ultrasensitive SERF Atomic Magnetometer for Biomagnetic Measurements R Wyllie, 1 Z Li, 2 R Wakai, 3 N Proite, 1 P Cook, 1 T Walker 1 1 – Department.
Magnetic/Electric Fields for KEK-RCNP EDM Experiment K. Matsuta(Osaka), Y. Masuda(KEK), Y. Watanabe(KEK), S.C. Jeong(KEK), K. Hatanaka(RCNP), R. Matsumiya.
スペクトルおよび 時間分解光誘起ファラデー回転による 磁気ポーラロンスピン配向過程 Spin polarization dynamics on magnetic polaron by means of spectrum- and time-resolved Faraday rotation 橋本 佑介、三野.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Ultrahigh precision observation of nuclear spin precession and application to EDM measurement T. Inoue, T. Furukawa, H. Hayashi, M. Tsuchiya, T. Nanao,
3 He Polarization Tests at UIUC Danielle Chandler David Howell UIUC.
Low-frequency nuclear spin maser and search for atomic EDM of 129 Xe A. Yoshimi RIKEN SPIN /10/11-16 Trieste, ITALY Collaborator : K. Asahi (Professor,
129 Xe 原子 EDM の探索実験について 吉見 彰洋 理研・応用原子核物理研 東工大.
Polarized Proton Solid Target for RI beam experiments M. Hatano University of Tokyo H. Sakai University of Tokyo T. Uesaka CNS, University of Tokyo S.
 Hyperon atom : Σ atom, Ξ, analysis of atomic data Level width : Determination of the coupling constants Σatom : Ξatom : Level Shift : Determination of.
Beam Polarimetry Matthew Musgrave NPDGamma Collaboration Meeting Oak Ridge National Laboratory Oct. 15, 2010.
Applications of polarized neutrons V.R. Skoy Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Dubna, Moscow Region, Russia.
Duke nEDM Collaboration Meeting The status of 3 He Relaxation Time Measurement at ~400mK Q. Ye, D. Dutta, H. Gao, W. Zheng, X. Zhu Duke University R. Golub,
光誘起キャリア緩和ダイナミクスおよびその偏光特性
Low–field NMR (or MRI) Images of Laser polarized Noble Gas.
Analysis MEMO Magnetic field shield for S-2S TOF detector 9Mar2015 Toshiyuki Gogami.
Low Field Nuclear Magnetic Resonance High Field (Resolution) NMR: 7.5 T < B < 37 T Study of chemical structures, reactions (only solution) Low Field (Resolution)
2007/11/02nEDM BOSTON1 Dressing Field Study Pinghan Chu University of Illinois at Urbana-Champaign nEDM Collaboration Boston Dressed.
The polarized target for G E n Gordon D. Cates, Jr. University of Virginia Professor of Physics and Radiology G E n, - October 24, 2003.
DOE 2/11/05 #1 EDM R&D Progress Steve Lamoreaux, Los Alamos Co-spokesperson for the EDM Project for presentation to The Department of Energy Cost & Schedule.
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Laser Laboratory (-ies) Peter Müller. 2 Search for EDM of 225 Ra Transverse cooling Oven: 225 Ra (+Ba) Zeeman Slower Optical dipole trap EDM probe Advantages:
CryoEDM – A Cryogenic Neutron-EDM Experiment Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus … but before: some.
Development of a System for High Resolution Spectroscopy with an Optical Frequency Comb Dept. of Applied Physics, Fukuoka Univ., JST PRESTO, M. MISONO,
Polarized 3 He Relaxation Low T Q. Ye, D. Dutta, H. Gao, K. Kramer, X. Qian, X. Zong (Duke) R.D. McKeown, L. Hannelius, B. Heyburn, S. Singer.
Ultra-low Field Nuclear Magnetic Resonance Measurements with SQUIDs
Atomic Sensors Research University of Wisconsin-Madison Thad Walker Anna Korver Dan Thrasher Mike Bulatowicz.
Study of T 1 relaxation time A proposal to test T 1 using a dilution fridge and SQUID NMA at Royal Hollow University,London.
Electric dipole moment searches E.A. Hinds Birmingham 11 th July 2011 Centre for Cold Matter Imperial College London.
J.S. Colton, Universal scheme for opt.-detected T 1 measurements Universal scheme for optically- detected T 1 measurements (…and application to an n =
R Wyllie, R Wakai, T G Walker University of Wisconsin, Madison Spin-Exchange Relaxation Free Heart signal frequency spectrum from DC-100Hz Adult heart.
高精度分光を目指した CaH + の 生成とトラップ 富山大学・理 森脇喜紀. Spectroscopy of 40 CaH + the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2)
Alex Sushkov Dima Budker Valeriy Yashchuk (UC Berkeley) Kerr Effect-based Measurement of the Electric Field.
EDMEDM C&S Review 2/11/05 #1 Martin Cooper, Los Alamos Co-spokesperson for the EDM Project for presentation to LANL Cost and Schedule Review Committee.
A Portable Ultrasensitive SERF Atomic Magnetometer for Biomagnetic Measurements R Wyllie, 1 Z Li, 2 R Wakai, 3 N Proite, 1 P Cook, 1 T Walker 1 1 – Department.
The cryogenic neutron EDM experiment at ILL Technical challenges and solutions James Karamath University of Sussex.
Mesure du moment électrique dipolaire du neutron Oscar Naviliat-Cuncic LPC-Caen et Université de Caen Basse-Normandie Journée de la division Champs et.
Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg) KEK-TRIUMF.
Neutron Electric Dipole Moment Search with a Spallation Ultracold Neutron Source at TRIUMF Spokespeople: Y. Masuda (KEK), J.W. Martin (Winnipeg) Collaborators:
(Instrument part) Thanundon Kongnok M
Spin Polarization Spectroscopy of
Using ultracold neutrons to constrain the neutron electric dipole moment Tamas Budner.
Multiplexed saturation spectroscopy with electro-optic frequency combs
NMR: Theory and Equivalence
Nuclear Magnetic Resonance
Presentation transcript:

129 Xe magnetometry for KEK-RCNP neutron EDM measurements M. Mihara, K. Matsuta (Osaka Univ.) Y. Masuda, S.C. Jeong, Y.X. Watanabe, S. Kawasaki (KEK) K. Hatanaka, R. Matsumiya (RCNP, Osaka Univ.) K. Asahi (TIT) C. Bidnosti (Winipeg Univ.) Y. Shin (TRIUMF) Workshop on nEDM Experimental Tecniques, Oct , 2012, ORNL

nEDM measurements with 129 Xe comagnetometer n 129 Xe EDM cell B E+E+ E–E– ν n = (2μ n B ± 2d n E)/h ν Xe = (2μ Xe B ± 2d Xe E)/h (ν n /ν Xe ) E + (ν n /ν Xe ) E – ≒ hν Xe γnγn γ Xe d meas E d n – d Xe γ Xe γnγn ~10 –28 e ・ cm ~10 –11 B = 1μT E = 10 kV/cm = ~29 Hz = ~12 Hz ~0.5 nHz +(0.7±3.3)x10 –27 e ・ cm Rosemberry & Chupp PRL86(2001)22

GPE for 129 Xe Buffer gas effect suppresses GPE 129 Xe mean free path λ (= 1/nσ) = 0.7~5 x /cc (7 mTorr)

GPE for 129 Xe Suppression factor S = (T d /T L ) –2 = 6 x 10 –4 d f ∝ (∂B 0z /∂z)R 2 /c 2 · S d fXe = ~0.9 x 10 –28 ecm B 0 = 2 µT ∂B 0z /∂z = 2 nT/m R = 0.25 m v xy = 240 λ = 0.7 mm diffusion time T d = (2R) 2 /(v xy λ) ~1.5 s Larmor precession time T L = 2π/ω 0 ~40 ms cf. d fHg = ~5 x 10 –26 ecm PLA376(2012)1347

129 Xe polarization system of Asahi (TIT) group. We will apply a part of this apparatus to co-magnetometry in nEDM. Xe FID signal Detection system will be replaced by SQUID or SERF or NMOR T 1 = 1000 s, T 2 = 350 s 50%

Polarize 129 Xe in EDM cell Rb-Xe [ 129 Xe] = ~2.5 x cm –3 T 1, T 2 > ~100 s N 2 free Measure 129 Xe precession SQUID probe laser

Polarize 129 Xe nuclear spin Optical pumping van der Waals molecule

Effect of N 2 buffer gas Rosenberry et al., PRA75(2007) N2N2 N2N2 Buffer gas N 2 : reduce absorption of de-exciting unpolarized photons Ruth et al., Appl. Phys. B 68 (1999) 93 Xe + N 2 + Rb N2N2 Plarization of Rb atoms Polarization of 129 Xe nuclei

Plan of 129 Xe magnetometer No buffer gas (N 2 ) in EDM cell pump laser probe laser V±V± UCN guide EDM cell (Xe: 7 mTorr) detector B 129 Xe & Rb External cell: EDM cell Xe: 7 mTorr (2.5 x cm -3 ) Total amount of Xe gas: 〜 20 liter (EDM cell + UCN guide) External cell: 7 Torr / 20 cm 3 T 2 > ~100 s polarize 129 Xe

Freeze-pump-thaw separation LN 2 probe laser pump laser Xe N2N2 pump ・ Xe + N 2 mixture in polarizing cell ・ Solidify Xe ・ Evacuate N 2 gas ・ Transport polarized 129 Xe into EDM cell Xe, N 2 Rb N 2 free Appl. Phys. B 68 (1999) 93

Rb-K mixture → 21 Ne polarization x 10

pump laser probe laser

129 Xe nuclear spin relaxation in EDM cell 1/T 2 = 1/T 1 + 1/T 2,field ∝ R 4 /D x | ∇ B| 2 ~10 pT/cm ∝ p –1 1/T 1 = 1/T 1,Xe-Rb + 1/T 1,Xe-Xe + 1/T 1,wall 1/T 1,Xe-Rb = (γ M ζ/[Xe] + ) [Rb] s –1 vdW ~10 –11 collision ~10 –16 = ~1/(10 s) (T = 300 K) [Cates et al., PRA45(1992)4631] 1/T 1,Xe-Xe = 1/(4.1 h) [Chann et al., PRL88(2002)113201] 1/T 1,wall = 1/(3 h) ~ 1/(several h) [Xe] = 2.5 x cm –3 (7 mTorr) [Rb] = 1 x cm –3 (T = 300 K) [Gemmel et al., EPJ D57(2010)303]

Measurement of P Xe, T 1

AFP-NMR B0B0 B1B1 Pickup coil RFcoil B 0 coil cell

Proton NMR (H 2 O) Lock-in amp. out B0B0 5 s ν L (proton) = 48 G

Rb & Xe transfer system Ti-sapphire & Ar laser Semiconductor laser

summary GPE for 129 Xe comagnetometer was discussed. Buffer gas effect suppresses GPE to d fxe ~10 –28 ecm. How to realize the 129 Xe comagnetomter is under consideration. But, N 2 free 129 Xe polarization may be possible. R & D has been just started. Precision measurements of NMR frequency ratio ω n /ω Xe are planed to determine g factor of 129 Xe and field gradient.

Spin exchange rate in exernal cell [Xe] = 2.5 x cm –3 (7 Torr), [N 2 ] = 3.5 x cm –3 (100 Torr) [Rb] = 3 x cm –3 (T = 400 K) P Xe (t) = P Rb (1 + Γ/γ se ) –1 x exp{–(Γ + γ se )t} P Rb (t) = (1 + Γ sd /γ + ) –1 x exp{–(Γ sd + γ + )t} Γ sd ; spin destruction rate of Rb atom γ + ; production rate of m J = +1/2 Γ; wall relaxation & Xe-Xe vdW γ se ; Rb-Xe spin exchange rate ( ) ( ) Γ sd = γ Xe-Rb [Xe] + γ Rb-Rb [Rb] + γ N2-Rb [N 2 ] = 1.2 x 10 3 s – γ se = γ Xe-Rb [Rb] = 0.13 s –1 [Wagshul & Chupp, RRA49(1994)3854] [Cates et al., PRA45(1992)4631]

Polarize 129 Xe nuclear spin Optical pumping m J = –1/2 m J = +1/2 σ+σ+ 5S 1/2 5P 1/ nm Energy levels of Rb atom λ = nm Rb 129 Xe σ+σ+ P Xe ≈ P Rb (1 + Γ/γ se ) –1 P Rb ≈ (1 + Γ sd /γ + ) –1 Γ sd ; spin destruction rate of Rb atom γ + ; production rate of m J = +1/2 Γ; 129 Xe relaxation rate except γ se γ se ; Rb-Xe spin exchange rate ( ) ( )

129 Xe magnetometer Polarize 129 Xe before storing UCN 129 Xe B B Measure ν Xe during Ramsey resonance ( 90° pulse ) T 2 > t c T 1 >> t c

現状および今後の計画 KEK→ 阪大に移設済 レーザー装置 テストセル製作用真空装置 テストセルを製作 バッファーガス無しで可能か? 偏極度, 緩和時間 (T 1, T 2 ) 測定 ↔ 最適化

Our approach to nEDM B B 129 Xe magnetization rμrμ = μ 0 /4π (3 r ( μ ∙ r ) - μ r 2 )/r 5 = 0.98× T at r = 0.1 m μ 2.5×10 16 /liter 129 Xe μ = × J/T S = 0.01 m 2 Φ = Φ 0 cos(ω 0 t) Φ 0 = h/2e = × Tm 2 We need to develop SQUID 1fT, 5μΦ 0 /√Hz vibration? SERF Cs magnetometer vibration small effect BoBo Observation of 129 Xe spin precession in the EDM cell EDM cell We have experience of Xe polarization by means of spin exchange optical pumping. SQUID or SERF or NMOR If 50% polarization, p =7x Torr, V =3 litters, B = 150 fT

PRA75(2007)023401

原案 ①: 直接法 Xe: 7 mTorr (2.5 x cm -3 ) Diffusion time: t d = (2R) 2 /(v xy λ) R = 0.25 m v xy = 158 m/s λ = 0.5 mm = ~ 3 s No buffer gas → P Xe ? pump laser probe laser

Appl. Phys. B 68 (1999) 93