CHE 333 CLASS 20 DIFFUSION.

Slides:



Advertisements
Similar presentations
Lecture on DIFFUSION IN SOLIDS. Applications of Diffusion in Solids
Advertisements

Diffusion (continued)
Chapter 6 Diffusion in Solids.
Chapter ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for.
Chapter 5: Thermally Activated Processes & Diffusion ME 2105 Dr. R. Lindeke.
Chapter ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for.
Fick’s Laws Combining the continuity equation with the first law, we obtain Fick’s second law:
Diffusion Movement of atoms in a material Thermal Energy = Atom Movement Eliminates concentration differences Important for material processing (heat treating,
Diffusion – And Its Role In Material Property Control
Chapter ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for.
Solid State Diffusion-1
CHAPTER 6: DIFFUSION IN SOLIDS
Solidification and Grain Size Strengthening
Dislocations – Linear Defects –Two-dimensional or line defect –Line around which atoms are misaligned – related to slip Edge dislocation: –extra half-plane.
CHAPTER 5: DIFFUSION IN SOLIDS
Crystalline Arrangement of atoms. Chapter 4 IMPERFECTIONS IN SOLIDS The atomic arrangements in a crystalline lattice is almost always not perfect. The.
CHAPTER 5 Diffusion 5-1.
Diffusion Interdiffusion: In an alloy, atoms tend to migrate from regions of high concentration to regions of low concentration. Initially After some.
Thermally Activated Processes and Diffusion in Solids
Diffusion Diffusion means atoms moving and changing places. This happens in solids and liquids, exactly in the same way that an unpleasant smell moves.
Chapter 5 Diffusion Skip Sec. 5-7, 5-8 and Homework No. 6 Problems 4-17, 4-19, 4-32, 4-47, 4-48, 5-9, 5-15, 5- 23, 5-26, 5-60.
ENS 205 Materials Science I Chapter 5: Diffusion
Anandh Subramaniam & Kantesh Balani
DIFFUSION IN SOLIDS  FICK’S LAWS  KIRKENDALL EFFECT  ATOMIC MECHANISMS Diffusion in Solids P.G. Shewmon McGraw-Hill, New York (1963)
Chapter 5 - Imperfections in Solids
1 Diffusion Diffusion: Atom and Ion Movements in Materials Applications of Diffusion  Nitriding - Carburization for Surface Hardening of Steels  p-n.
Introduction To Materials Science, Chapter 5, Diffusion University of Virginia, Dept. of Materials Science and Engineering 1 Diffusion  how atoms move.
Materials science I - Metallic materials Metallic materials Solid state atomic structure atomic arrangement microstructure macrostructure Pure materials.
Dispersion Strengthening by Heat Treatment Chapter 11a – 4 th Edition Chapter 12a- 5 th Edition.
Relative Energy Levels of Defects Information was extracted from: Porter and Easterling, Phase Transformations in Metals and Alloys, 2nd Edition, CRC Press,
Introduction Material transport by atomic motion Diffusion couple:
V. Diffusion in Solids MECE 3345 Materials Science 1 VI. Diffusion in Solids copyright © 2008 by Li Sun.
EGR 106 – Functions Functions – Concept – Examples and applications Textbook chapter p15-165, 6.11(p 178)
Molecular Diffusion in Metal Alloys Aaron Morrison ME 447.
Diffusion videos YouTube: Diffusion posted by smcblackburn
IMPERFECTIONS IN SOLIDS
CHAPTER 5 Diffusion 5-1. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display Atomic Diffusion in Solids Diffusion.
1 ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple.
Week 9 - Programming III Today: – Another loop option – A programming example: tic-tac-toe Textbook chapter 7, pages , (sections 7.4.2,
1 CHAPTER 7 Structure and Properties of Materials Defects and Properties : Point Defects and Diffusion.
ENGR-45_Lec-07_Diffusion_Fick-2.ppt 1 Bruce Mayer, PE Engineering-45: Materials of Engineering Bruce Mayer, PE Registered Electrical.
Diffusion (continued)
ISSUES TO ADDRESS... How does diffusion occur? Why is it an important part of processing? How can the rate of diffusion be predicted for some simple cases?
Chapter 1 Diffusion in Solids. Diffusion - Introduction A phenomenon of material transport by atomic migration The mass transfer in macroscopic level.
HEAT TREATMENT OF STEEL
Lecture 17: Diffusion PHYS 430/603 material Laszlo Takacs UMBC Department of Physics.
Diffusion Chapter 5. Mechanics of Diffusion Primary method by which atoms mix Consider a drop of food coloring in a glass of water.
SURFACE HARDENING HEAVY CROSS SECTION - IMPOSSIBLE TO COOL QUICKLY TO PRODUCE A UNIFORMLY MARTENSITIC STRUCTURE THROUGHOUT A SOFT UNHARDENED CORE DUE TO.
Imperfections in Solids
A closer look at Diffusion: Part II March 2001 D.G. Ast.
Try not to have a good time...this is supposed to be educational
Introduction to Materials Science and Engineering
CHAPTER 5: DIFFUSION IN SOLIDS
Diffusion Thermally activated process
5 Atom and Ion Movements in Materials
Yield strength: the elongation of a mat'l
Chapter 5: Diffusion ISSUES TO ADDRESS... • How does diffusion occur?
Diffusion how atoms move in solids
Point Defects in Crystalline Solids
Atom and Ion Movements in Materials
Chapter 5: Diffusion in Solids
Example Ni-base superalloy
Rate Process and Diffusion
Transport Zuoan Li NorFERM-2008.
EME 201 Materials Science Diffusion.
CHAPTER 5: DIFFUSION IN SOLIDS
TOPIC 2: Diffusion in Solids
Rate Process and Diffusion
PDT 153 Materials Structure And Properties
Diffusion Chapter 5 9/4/2019 9:52 AM9/4/2019 9:52 AM
Presentation transcript:

CHE 333 CLASS 20 DIFFUSION

DIFFUSION Diffusion – is the movement of matter driven by chemical and thermal processes such as concentration gradients and heating. Both are needed as it is an activation controlled process. An energy barrier is present so external energy must be provided, such as heat. Atoms will diffuse down a concentration gradient provided they have overcome the activation energy needed for the process. Copper atoms will diffuse into the nickel until an equal concentration is achieved. Remember that Cu-Ni system is one of complete solid solubility.

MECHANISMS 2. Interstitial diffusion involves small Substitutional diffusion is vacancy controlled – a vacancy or missing atom on its lattice site is needed for the atom to jump into. As one atom jumps into a vacancy it leaves a vacancy. 2. Interstitial diffusion involves small atoms diffusing in a matrix of large atoms. For metallic atoms, the H, C, N, O, B atoms are the ones small enough to fit in the spaces between the large metallic atoms.

J= -D(dC/dx) Ficks First Law RATES OF DIFFUSION Steady State Diffusion – constant linear concentration gradient. J – Diffusion Flux – atoms/m2.sec – number of atoms moving through one m2 in one sec. This is the rate of unidirectional mass motion per unit area per second. J= -D(dC/dx) Ficks First Law D – diffusivity or diffusion coefficient – m2/s. Depends on temperature, diffusing element, bond strength, packing factor and imperfections. dC/dx – concentration gradient. Solute Solvent D at 500 C D at1000 C Carbon BCC iron 5x10-12 2x10-9 Carbon FCC iron 5x10-15 3x10-11 Iron BCC iron 10-20 3x10-14 Nickel FCC iron 10-23 2x10-16 Silver Silver Xtal 10-17 Silver Silver Grain Bound 10-11 Conc dC/dx Distance Gradient is constant with time

Substitutional and Interstitial From the data, interstitial diffusion is much faster then substitutional diffusion, by several orders of magnitude. Solute Solvent Type D at 500 C D at 1000 C Carbon BCC iron Inter 5x10-12 2x10-9 Iron BCC iron Subst 10-20 3x10-14 Grain boundary diffusion is faster then transgranular diffusion due to the higher number of defects at a grain boundary. This is important in second phase growth under equilibrium conditions, as second phases are then usually found on grain boundaries of the initial phase. For example pro-eutectoid phases in steels.

Non Steady State Ficks 2nd Law Non Steady State – Concentration changes at position x as a function of time, eg Cu Ni dc/dt=D(d2C/dx2) Ficks 2nd Law Solution to this :- (Cx-Co)/(Cs-Co)= 1- erf(x/2((Dt)-1/2)) Cx – concentration at depth x at time t, wt% Co – concentration in average in bulk, wt % Cs – concentration at surface, fixed with time t, wt% Co- concentration in average in bulk, wt% erf – error function – look up in tables. x – distance below surface, m D – diffusion coefficient, m2/s t – time in seconds Cu Conc’n 100% t=0 t=equilib 50% t=0.5 equilib 0% Distance

Example Time for the carbon concentration at 500C to reach half way between the steel composition level and the external level at 0.5mm below the surface. Using Fick’s second law Cx-Co/Cs-Co= 1- erf(x/2((Dt)-1/2)) The left hand side is 0.5. 0.5= 1- erf(x/2((Dt)-1/2)) Rearranging 0.5 = erf(x/2((Dt)-1/2)) 0.5 = erf(0.5205) So 0.5=(x/2((Dt)-1/2)) Dt = x2 t=x2/D =(5x10-4)2/(5x10-12) t= 25x10-8/5x10-12 =5x104sec =13.8 hours

Diffusion and Temperature Diffusion increased with temperature It is activation controlled so follows:- D=Do exp(-E/kT) Where D = Diffusivity(m2/sec) Do = Constant E = activation energy k = Boltzman’s Constant T = temperature in oK k= 13.8x10-24 J/atom.K lnD=lnDo – Q/RT Q – cal/mole R – 1.987 cal/mole.K y= c +mx Slope = Q/R if ln D plotted against 1/T

Practical Example Decarburizing. Hypereutectoid Steel – Carpenter #11 Decarburized layer - ferrite 1600F for 10 minutes then air cool – etch 5% Nital mag X20.

Practical Example Decarburization at 1200F after quench crack in material. The crack left enough open surface For the carbon to diffuse out and leave a ferrite layer either side of the crack.

Other Applications Bonding – by placing metals close together and heating them, as atoms from one go into the other, a bond is formed. Nitriding, carburizing, for surface hardening of steels – forms hard compounds on the Surface for wear resistance. Removal of hydrogen after electroplating – heat up to 350F for 24 hours to reduce hydrogen and stop hydrogen embrittlement in high strength steels. Semi conductor processing – dopants added by diffusion to silicon wafers. Vacuum heat treating of titanium – oxygen embrittles titanium so use a vacuum atmosphere or remove a surface layer calculated from Ficks second law. Fuel Cells – Proton Exchange Membrane hydrogen ion diffuses through a polymer. Pharmaceutical drug delivery – controlled release through polymers, creates steady flow compared to tablets which have a high initial amount then quickly low.

Materials Different Materials and Diffusion Rates Metals in metals slow, interstitials in metals much faster. Polymers – Fick’s Laws observed, fast diffusion, for example moisture into polymers 1.5% weight gain into “free volume” as it is not a crystal structure. Ceramics – very low near zero diffusion rates – ionic and covalent bonding. Composites –orientation dependent, along fiber interfaces high. Damaging – decarburization, oxygen in titanium alloys, hydrogen in steels, oxygen and nitrogen along grain boundaries in metals at high temperature, moisture pick up in composites. Useful Surface treatments of metals, for example carburizing, nitriding Porous materials, lubricant impregnated bearings. Permeation – like diffusion but use volume defects. Concrete – moisture, salt, leads to steel corrosion – Fick’s second law.