The Metagalactic Ultraviolet Background Jennifer E. Scott.

Slides:



Advertisements
Similar presentations
Tom Theuns Institute for Computational Cosmology, Durham, UK Department of Physics, Antwerp, Belgium Munich 2005 Reionization And the thermal history of.
Advertisements

Probing the End of Reionization with High-redshift Quasars Xiaohui Fan University of Arizona Mar 18, 2005, Shanghai Collaborators: Becker, Gunn, Lupton,
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
Lyman-α Galaxies at High Redshift James E. Rhoads (Space Telescope Science Institute) with Sangeeta Malhotra, Steve Dawson, Arjun Dey, Buell Jannuzi, Emily.
First Stars, Quasars, and the Epoch of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Instituto de Astrofísica.
21cm Lines and Dark Ages Naoshi Sugiyama Department of Physics and Astrophysics Nagoya University Furlanetto & Briggs astro-ph/ , Zaldarriaga et.
ESO Recent Results on Reionization Chris Carilli (NRAO) Dakota/Berkeley,August 2011 CO intensity mapping during reionization: signal in 3 easy steps Recent.
End of Cosmic Dark Ages: Observational Probes of Reionization History Xiaohui Fan University of Arizona New Views Conference, Dec 12, 2005 Collaborators:
ESO Recent Results on Reionization Chris Carilli (NRAO) LANL Cosmology School, July 2011 Review: constraints on IGM during reionization  CMB large scale.
Digging into the past: Galaxies at redshift z=10 Ioana Duţan.
Cosmological Reionization Nick Gnedin. Co-starring Gayler Harford Katharina Kohler Peter Shaver Mike Shull Massimo Ricotti.
15 years of science with Chandra– Boston 20141/16 Faint z>4 AGNs in GOODS-S looking for contributors to reionization Giallongo, Grazian, Fiore et al. (Candels.
Quasar Luminosity Functions at High Redshifts Gordon Richards Drexel University With thanks to Michael Strauss, Xiaohui Fan, Don Schneider, and Linhua.
9/19/2014 Claus Leitherer: Lyman Continuum Leakage 1 Lyman Continuum Leakage in the Local Universe Claus Sanch Tim Janice Sally Roderik Leitherer Borthakur.
The Lyman Continuum Escape Fraction Harry Teplitz, Brian Siana, & Claudia Scarlata.
Collaborators: E. Egami, X. Fan, S. Cohen, R. Dave, K. Finlator, N. Kashikawa, M. Mechtley, K. Shimasaku, and R. Windhorst.
A hot topic: the 21cm line II Benedetta Ciardi MPA.
A New Constraint on the Intergalactic HeII Fraction at z~3 Matt McQuinn Einstein Fellows Symposium.
September 6— Starburst 2004 at the Institute of Astronomy, Cambridge Constraints on Lyman continuum flux escaping from galaxies at z~3 using VLT.
Primeval Starbursting Galaxies: Presentation of “Lyman-Break Galaxies” by Mauro Giavalisco Jean P. Walker Rutgers University.
Cosmology with the 21 cm Transition Steve Furlanetto Yale University September 25, 2006 Steve Furlanetto Yale University September 25, 2006.
Simulating the ionisation and metal enrichment history of the Intergalactic Medium Tom Theuns Institute for Computational Cosmology, Durham, UK Department.
Simona Gallerani Constraining cosmic reionization models with QSOs, GRBs and LAEs observational data In collaboration with: A. Ferrara, X. Fan, T. Choudhury,
Galaxies at High Redshift and Reionization Bunker, A., Stanway, E., Ellis, R., Lacy, M., McMahon, R., Eyles, L., Stark D., Chiu, K. 2009, ASP Conference.
Post GP-WMAP Reionization: the morning after We need quantitative measures of Epoch of reionization (Z reion ) Neutral fractions Volume fraction of ionized/neutral.
Rupert Croft (Carnegie Mellon). Studing Radiation-Induced LSS: Motivation We know a lot about the growth of large-scale structure due to gravitational.
Andrew Fox (ESO-Chile) Jacqueline Bergeron & Patrick Petitjean (IAP-Paris)
New Insight Into the Dust Content of Galaxies Based on the Analysis of the Optical Attenuation Curve.
WMAP Implications for Reionization Columbia University The Davis Meeting on Cosmic Inflation March, 2003 Zoltán Haiman.
130 cMpc ~ 1 o z~ = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI.
130 cMpc ~ 1 o z = 7.3 Lidz et al ‘Inverse’ views of evolution of large scale structure during reionization Neutral intergalactic medium via HI 21cm.
Simona Gallerani Constraining reionization through quasar and gamma ray burst absorption spectra In collaboration with: T. Roy Choudhury, P. Dayal, X.
The Evolution of Quasars and Massive Black Holes “Quasar Hosts and the Black Hole-Spheroid Connection”: Dunlop 2004 “The Evolution of Quasars”: Osmer 2004.
Benedetta Ciardi MPA Reionization Nucleosynthesis ‘Dark Ages’ Big Bang Fluctuations begin to condense into first stars and protogalaxies Decoupling matter-radiation.
Sources of Reionization Jordi Miralda Escudé Institut de Ciències de l’Espai (IEEC-CSIC, ICREA), Barcelona. Beijing,
10/14/08 Claus Leitherer: UV Spectra of Galaxies 1 Massive Stars in the UV Spectra of Galaxies Claus Leitherer (STScI)
Andrea Ferrara SISSA/International School for Advanced Studies, Trieste Cosmic Dawn and IGM Reionization.
Shedding (Quasar) Light on High Redshift Galaxies Joseph F. Hennawi UC Berkeley Hubble Fellowship Symposium April 2, 2007.
In this toy scenario, metal enriched clouds entrained in galactic winds gives rise to absorption lines in quasar spectra, as illustrated in the above panels.
Radiation backgrounds from the first sources and the redshifted 21 cm line Jonathan Pritchard (Caltech) Collaborators: Steve Furlanetto (Yale) Marc Kamionkowski.
9 ½ empirical Lyα relationships Jeff Cooke. 1. UV continuum reddening, β parameter 2. ISM absorption line width/strength 3. Outflows and HI column density/covering.
Observational Constraints of of Reionization History in the JWST Era Observational Constraints of of Reionization History in the JWST Era Xiaohui Fan University.
The Effect of Escaping Galactic Radiation on the Ionization of High-Velocity Clouds Andrew Fox, UW-Madison STScI, 8 th March 2005.
Collaborators Blair Savage, Bart Wakker (UW-Madison) Blair Savage, Bart Wakker (UW-Madison) Ken Sembach (STScI) Ken Sembach (STScI) Todd Tripp (UMass)
The impact of He II reionisation on the H I Ly-  forest Jamie Bolton Peng Oh (UCSB), Steve Furlanetto (UCLA)
The z > 5 Lyα forest at high resolution George Becker (Caltech) Wal Sargent (Caltech), Michael Rauch (OCIW), Rob Simcoe (MIT) IAU 199 March 18, 2005.
The Distributions of Baryons in the Universe and the Warm Hot Intergalactic Medium Baryonic budget at z=0 Overall thermal timeline of baryons from z=1000.
Finding z  6.5 galaxies with HST’s WFC3 and their implication on reionization Mark Richardson.
Simulations of Lyα emission: fluorescence, cooling, galaxies Jordi Miralda Escudé ICREA University of Barcelona, Catalonia Berkeley, Collaborators:
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Lyman- Emission from The Intergalactic Medium
‘LAEs as a Probe of the High-z Universe’, Ringberg, March, 2009 Lyman Alpha Emitters (LAEs) as a Probe of the High- Redshift Universe Mark Dijkstra (CfA)
From Avi Loeb reionization. Quest to the Highest Redshift.
Probing the Reionization Epoch in the GMT Era Xiaohui Fan (University of Arizona) Seoul/GMT Meeting Oct 5, 2010.
Mark Dijkstra, PSU, June 2010 Seeing Through the Trough: Detecting Lyman Alpha from Early Generations of Galaxies ‘ Mark Dijkstra (ITC, Harvard) based.
The Twilight Zone of Reionization Steve Furlanetto Yale University March 13, 2006 Steve Furlanetto Yale University March 13, 2006 Collaborators: F. Briggs,
Big Bang f(HI) ~ 0 f(HI) ~ 1 f(HI) ~ History of Baryons (mostly hydrogen) Redshift Recombination Reionization z = 1000 (0.4Myr) z = 0 (13.6Gyr) z.
Radiative Transfer Simulations The Proximity Effect of LBGs: Antonella Maselli, OAArcetri, Firenze, Italy Collaborators: A.Ferrara, M. Bruscoli, S. Marri.
The Dark Age and Cosmology Xuelei Chen ( 陈学雷 ) National Astronomical Observarories of China The 2nd Sino-French Workshop on the Dark Universe, Aug 31st.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
Lyα Forest Simulation and BAO Detection Lin Qiufan Apr.2 nd, 2015.
FUSE and HST Observations of Helium II Absorption in the IGM: Implications for Seeing HI Re-ionization Gerard Kriss STScI.
Cosmological Structure with the Lyman Alpha Forest. Jordi Miralda Escudé ICREA, Institut de Ciències del Cosmos University of Barcelona, Catalonia Edinburgh,
Michael Murphy Elisa Boera Collaborators: Supervisor : G. Becker J. Bolton.
High Redshift QUASAR Spectra as Probe of Reionization of IGM.
Proximity Effect Around High-redshift Galaxies
Cosmology With The Lyα Forest
Martin Haehnelt, Matteo Viel, Volker Springel
Probing Reionization with Lyman Alpha Emitters Pratika Dayal
STRUCTURE FORMATION MATTEO VIEL INAF and INFN Trieste
Presentation transcript:

The Metagalactic Ultraviolet Background Jennifer E. Scott

Weymann et al Kim et al Dobrzycki et al Redshift evolution of Ly  absorbers flattens with redshift

Dave et al Evolution primarily driven by evolution in UVB

The Proximity Effect classical method The Ly  forest line density is modified by the presence of the quasar: Weyman, Carswell, & Smith 1981 Murdoch et al Carswell et al Bajtlik, Duncan, & Ostriker 1988 Lu et al. 1991

Redshift evolution- corrected line distribution Ratio of quasar flux to background flux Proximity effect line deficit JS et al. 2002

Log(mean intensity) also Lu et al Cristiani et al Giallongo et al Srianand & Khare 1996 Line counting methods

Ly  Forest as FGPA  Match mean flux decrement in hydrodynamical simulations to observations of Ly  forest  Use shape of flux decrement distribution to test cosmological models Assume photoionization equilibrium negligible v pec thermal broadening Use effective e.o.s. Rauch et al. 1997

Bolton et al Also McDonald & Miralda-Escude (2001) Meiksin & White (2004) Songaila et al. (2004) Tytler et al. (2004) Bolton et al. (2005) Kirkman et al. (2005) D’Odorico et al. (2008) Faucher-Giguere et al. (2008d)

Dall’Aglio et al. 2008a,b Wisotzki With high resolution & S/N data detect PE in individual quasar spectra and examine the distribution of PE strengths Bias (upwards) from using global approach to PE use modal value or “hybrid” method using a subsample with low overdensities and a correction for sample averaging using Monte-Carlo simulations Proximity effect revisited Instead of counting lines use flux transmission statistics change in  eff near quasars  eff = B(1+z)  +1 (1+  ) 1-  Lisk & Williger 2001 Proximity effect revisited Instead of counting lines use flux transmission statistics change in  eff near quasars  eff = B(1+z)  +1 (1+  ) 1-  Lisk & Williger 2001

Quasar systemic redshifts Many emission lines show shifts of several x 100 km/s with respect to systemic VandenBerk et al Also Tytler & Fan 1992 McIntosh et al Richards et al. 2002

Quasar Lyman limit fluxes HST composite spectrum Telfer et al. 2002

Quasars in overdense regions (Loeb & Eisenstein 1995, Rollinde et al. 2005, Guimaraes et al. 2007, Hennawi & Prochaska 2007, Prochaska & Hennawi 2009)  Overdensities to ~4 Mpc (D’Odorico et al. 2008, Faucher-Giguere et al. 2008a)  Overdensities and infall each contribute ~equally to overestimates of UVB from PE factor of ~(3.5,2.5,2) at z=(2,3,4) (Faucher-Giguere et al. 2008a)  Overdensities of factor of a few within 2.5 h -1 Mpc for chosen metagalactic UVB but no systematic enhancement- therefore can break degeneracy using overdensity distribution (high overdensity leads to tail in PESD) (Dall’Aglio et al. 2008b)

Hopkins et al UVB Sources Quasar space density

Hopkins et al Also Madau, Haardt, & Rees 1999 Bianchi, Cristiani, & Kim 2001 Quasars account for all of the observationally estimated  at z<1, and ~50% at z~2-3 But the quasar luminosity density drops off much faster than  at higher z z < 2: the faint quasar contribution is important z > 2: bright quasars dominate the luminosity density Bolton et al. (2005) (diamonds, z = 2-4) Tytler et al. (2004) (star, z = 1.9) Rollinde et al. (2005) (triangle, z = 2.75) McDonald & Miralda-Escude (2001, 2003) (squares, z = ) Fan et al. (2006a) (circles, z = 5-6) JS et al. (2000) (boxes, z ~ 0-1 and z ~ 2-4) UVB Sources

Cosmological simulations with radiative transfer require stellar contribution to rise at z>3 to compensate for drop in quasar space density Sokasian, Abel, & Hernquist 2003 Proximity effect measurements UVB Sources

Faucher-Giguere et al. 2008d Faucher-Giguere et al. 2008b Sawicki & Thompson (2006) (Keck Deep Fields) Reddy et al. (2008) (Keck LBG) Yoshida et al. (2006) (Subaru Deep Field) Bouwens et al. (2007) (HUDF & other deep HST fields). Steidel et al. (1999) z~4 LBGs w/LF values of Reddy et al. (2008) UVB demands star formation at z>3 faint end slope? (cf. Rauch et al faint LAEs 2.67<z<3.75) (Hopkins & Beacom) (Hernquist & Springel) UVB Sources

Inoue, Iwata, & Deharveng 2006 see also Sbrinovsky & Wyithe 2009 JS et al Bolton et al Fan et al. 2006b --- QSOs (Bianchi, Cristiani, & Kim 2001) ……galaxies UVB requires f esc =0.01 at z<1 =0.1 at z>4 UVB Sources

Steidel, Pettini, & Adelberger 2001 Composite spectrum- 29 LBGs Residual Lyman continuum flux Direct detection of LyC photons in only 2 of 14 LBGs Shapley et al. 2006

f esc * ~0.01 <0.02 ~ ** *E(B-V)=0.15 and Calzetti et al. (2000) reddening law **Iwata et al. (2009) find similar value for 7 LBGs in a protocluster at z~3 with (f 1500 /f 900 ) stel ~1, for (f 1500 /f 900 ) stel =6, this becomes f esc ~0.4 Yajima: 0.17 < f esc < 0.47 for high z LBGs/LAEs Siana et al (+2009)

 Low z and high z SFG spectra are similar (Schwartz et al. 2006)  Smaller f esc for low z galaxies explained if observed in pre-blowout phase in which LyC photons are inhibited (Fujita et al. 2003)  Also larger outflow velocities in galaxies with higher SFR/M (Grimes et al. 2009) and SFR/M increases with redshift (Damen et al. 2009)  Need f esc (t/z,L/M) to account for outflows, galaxy masses (Gnedin et al. 2008) and AGN duty cycles (McCandliss 2009) Complicating factors include: intrinsic Ly break ISM/IGM reddening values, extinction laws Complicating factors include: intrinsic Ly break ISM/IGM reddening values, extinction laws

UVB Spectrum probed by IGM metals (Ryan-Weber, Schaye, Becker, Fox, Bagla) He II Ly  forest (Fechner, Worseck) IGM photoheating from reionization  HI (Bolton) b distribution (Bolton)

Spectrum of UVB: He II Ly  forest Measure He II Ly  at z> 2 (FUSE) or z >2.8 (HST) to constrain ratio of UVB intensity or shape at 1 and 4 Ryd for photoionization equilibrium <200 for AGN-dominated UVB

He II quasars Q z=3.3Jakobsen et al. 1994, Heap et al Q z=3.0Reimers et al HS z=2.7Davidsen et al. 1996, Fechner et al. 2006a,b PKS z=3.1Tytler et al SDSSJ z=3.5Zheng et al HE z=2.8Reimers et al. 1997, Kriss et al More to come… Syphers et al Zheng et al Worseck

Large observed fluctuations in  imply fluctuations in  HeII since  HI ~uniform at these redshifts Zheng et al HE

Fluctuations expected at He II reionization epoch from:  discrete sources and small He II ionizing photon mpf (esp. relative to HI) (Fardal et al. 1998, Bolton et al. 2006, McQuinn et al. 2008, Furlanetto & Oh 2008a, Furlanetto 2009a,b)  large dispersion of  s (Telfer et al. 2002, JS et al. 2004)  radiative transfer effects (Abel & Haehnelt 1999, Sokasian et al. 2002, Masseli & Ferrara 2005, Tittley & Meiksin 2007, McQuinn et al. 2008)  local sources (Jakobsen et al. 2003, Worseck & Wisotzki 2006, Worseck et al. 2007)

Agafonova et al. 2005, 2007 Reimers et al Also Zheng et al He II reionization Opacity increase at z~3 Consistent with increase in IGM temperature from photoionization Ricotti et al Schaye et al Theuns et al But see Bolton, Oh, & Furlanetto 2009a

Change at z~3 Epoch of He II reionization Spectrum of UVB: Metals Songaila 1998, 2005  3-4 Ryd UVB needed for ionization corrections to measure IGM metallicity  Si IV & C IV IP straddle He II  Hardening at z≤3 Vladilo et al Agafonova et al. 2005, 2007

But others find no break Also Aguirre et al find observed IGM Si, C absorption cannot be reproduced using a spectrum with a transition due to He II ionization at z=3.2 Kim, Cristiani, & D’Odorico 2002 also Boksenberg et al Spectrum of UVB: Metals

Spectrum of UVB: Metals Agafonova et al No contribution from SFG needed to reproduce metal absorption -> f esc <0.05 HE HS Sawtooth modulation from He II Ly series can depress UVB at 3-4 Ryd Madau & Haardt 2009

HI optical depth small filled circles 796 SDSS QSOs S/N >4 stars Sargent et al. (1989), diamonds Schneider et al. (1991) squares Zuo & Lu (1993) triangles McDonald et al. (2000) large filled circles Schaye et al. (2000) Bernardi et al Also Faucher-Giguere et al. 2008c Dall’Aglio et al But not seen by McDonald et al Dip at z~3.2: change in T IGM ? change in n e ? enhancement in  HI ? (Bolton, Oh, & Furlanetto 2009b, Faucher-Giguere et al. 2008d)

Schaye et al Also Ricotti et al. 2000, Theuns et al Not seen by McDonald et al. 2001, Zaldarriaga et al Doppler parameter distribution

Complications He II reionization process can lead to complex, multi-valued, even inverted EOS (Gleser et al. 2005, Becker et al. 2007, Furlanetto & Oh 2008b, Bolton et al. 2008) But see McQuinn et al If hard photons deposit energy into high N HI systems, this will not be reflected in b boost to low N HI absorbers observed thus far uncertainty in interpreting temperature boost in IGM (Bolton, Oh, Furlanetto 2009a)

UVB models  Haardt & Madau 1996 QSOs + recombination emission  Haardt & Madau 2001 HM96 + galaxies  Bolton et al scaling relations with cosmological parameters (e.g.  b,  8 ) and IGM properties (e.g.  eff, T)  Madau & Haardt 2009 He II forest  Faucher-Giguere et al Updated galaxy, AGN LF Explicit consideration of He II reionization Lesser contribution from recombination emission, as informed by photoionization calculations

Faucher-Giguere et al Ionizing spectra similar in shape after He II reionization Quasar contribution drops more rapidly than HM at z >2 but  HI boosted by enhanced galaxy contribution

Future Work  Luminosity functions at high z: faint source contributions  Galaxy f esc  AGN duty cycles  Quasar environments  Quasar systemic redshifts  Direct fluorescence measurements  COS: He II Ly  forest- fluctuations in  / local sources IGM Legacy- low z UVB  Models: Radiative transport Luminosity-dependent parameters, e.g. AGN spectral slope, f esc