1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006.

Slides:



Advertisements
Similar presentations
FINESSE FINESSE Frequency Domain Interferometer Simulation Versatile simulation software for user-defined interferometer topologies. Fast, easy to use.
Advertisements

Dual Recycling for GEO 600 Andreas Freise, Hartmut Grote Institut für Atom- und Molekülphysik Universität Hannover Max-Planck-Institut für Gravitationsphysik.
Optical simulation – March 04 1 Optical Simulation François BONDU VIRGO Tools Goals Example: tuning of modulation frequency A few questions.
Stefan Hild and Andreas Freise University of Birmingham Advanced Virgo telecon, June 2008 Beam sizes and mirror curvatures for Advanced Virgo.
Higher order TEM modes: Why and How? Andreas Freise European Gravitational Observatory 17. March 2004.
Measurement of the laser beam profile at PSL to Mode Cleaner interface for the 40 Meter Prototype Interferometer A table of contents 1. Introduction 1.1.
Thermally Deformable Mirrors: a new Adaptive Optics scheme for Advanced Gravitational Wave Interferometers Marie Kasprzack Laboratoire de l’Accélérateur.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
Stefan Hild, Andreas Freise, Simon Chelkowski University of Birmingham Roland Schilling, Jerome Degallaix AEI Hannover Maddalena Mantovani EGO, Cascina.
GWADW, May 2012, Hawaii D. Friedrich ICRR, The University of Tokyo K. Agatsuma, S. Sakata, T. Mori, S. Kawamura QRPN Experiment with Suspended 20mg Mirrors.
GWADW 2010 in Kyoto, May 19, Development for Observation and Reduction of Radiation Pressure Noise T. Mori, S. Ballmer, K. Agatsuma, S. Sakata,
G R DC Readout for Advanced LIGO P Fritschel LSC meeting Hannover, 21 August 2003.
Thermal noise issues Chinyere Ifeoma Nwabugwu Louisiana State University August 05, 2005 Eric Black, Akira Villar, Kenneth G. Libbrecht, Kate Dooley, Royal.
Optical Configuration Advanced Virgo Review Andreas Freise for the OSD subsystem.
Optical readout for a resonant gw bar. Old setup.
Double-Clad Erbium-Ytterbium Co-Doped Fiber Laser Colin Diehl & Connor Pogue.
Experimental test of higher-order LG modes in the 10m Glasgow prototype interferometer B. Sorazu, P. Fulda, B. Barr, A. Bell, C. Bond, L. Carbone, A. Freise,
Advanced VIRGO WG1: Status VIRGO, Cascina Andreas Freise University of Birmingham.
European Gravitational Observatory12/12/2005 WG1 Hannover 1 Mode Matching of the Fabry-Perrot cavities Julien Marque.
LISA October 3, 2005 LISA Laser Interferometer Space Antenna Gravitational Physics Program Technical implications Jo van.
1 Virgo commissioning: Next steps December 12 st 2005 Hannover, ILIAS-GWA WG1 Matteo Barsuglia, LAL/CNRS.
Topology comparison RSE vs. SAGNAC using GWINC S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. ChelkowskiSlide 1ET Workshop, Erice, 10/2009.
1 GEO Simulation Workshop, October 25 th 2007 M Laval The Virgo FFT code: DarkF Mikael Laval CNRS UMR 6162 ARTEMIS, Observatoire de la Côte d’Azur, Nice,
Advanced Virgo Optical Configuration ILIAS-GW, Tübingen Andreas Freise - Conceptual Design -
LSC-VIRGO joint meeting - Pisa1 Input mirrors thermal lensing effect Frequency modulation PRCL length in Virgo Some results from a Finesse simulation.
LIGO-G0200XX-00-M GWADW Isola d'Elba (Italy), May 281 Generation of flat-top beam in a “Mexican hat” Fabry-Perot cavity prototype for advanced GW.
January 12, 2006ILIAS-WG3 Frascati1 Virgo+ & Advanced Virgo B. Mours With material from G. Losurdo, M. Punturo, A. Viceré and others.
Flat-Top Beam Profile Cavity Prototype
LIGO-G0200XX-00-M LIGO Scientific Collaboration1 First Results from the Mesa Beam Profile Cavity Prototype Marco Tarallo 26 July 2005 Caltech – LIGO Laboratory.
Quantum noise observation and control A. HeidmannM. PinardJ.-M. Courty P.-F. CohadonT. Briant O. Arcizet T. CaniardJ. Le Bars Laboratoire Kastler Brossel,
1 Advanced Virgo Workshop 14/06/2007 M Laval Fabry Perot cavity for LG and Flat modes Mikael Laval (OCA/ARTEMIS) Outlines: Tools: The optical simulation.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
1 The Virgo noise budget Romain Gouaty For the Virgo collaboration GWADW 2006, Isola d’Elba.
Abstract The Hannover Thermal Noise Experiment V. Leonhardt, L. Ribichini, H. Lück and K. Danzmann Max-Planck- Institut für Gravitationsphysik We measure.
Nov 3, 2008 Detection System for AdV 1/8 Detection (DET) Subsystem for AdV  Main tasks and requirements for the subsystem  DC readout  Design for: the.
S. ChelkowskiSlide 1LSC Meeting, Amsterdam 09/2008.
AdV Thermal Compensation System Viviana Fafone AdV/aLIGO joint technical meeting, February 4, 2004.
M. Mantovani, ILIAS Meeting 7 April 2005 Hannover Linear Alignment System for the VIRGO Interferometer M. Mantovani, A. Freise, J. Marque, G. Vajente.
Dual Recycling in GEO 600 H. Grote, A. Freise, M. Malec for the GEO600 team Institut für Atom- und Molekülphysik University of Hannover Max-Planck-Institut.
1 Virgo Commissioning Status WG1 meeting Potsdam, 21 st July 2006.
Janyce Franc-Kyoto-GWADW1 Simulation and research for the future ET mirrors Janyce Franc, Nazario Morgado, Raffaele Flaminio Laboratoire des Matériaux.
Janyce Franc Effect of Laguerre Gauss modes on thermal noise Janyce Franc, Raffaele Flaminio, Nazario Morgado, Simon Chelkowski, Andreas Freise,
Specifications for OMC telescope in AdVirgo R. Gouaty, E. Tournefier Estimation of carrier HOM power at the dark port Constraints on OMC waist and position.
The control of the Virgo Superattenuator: present and future Giovanni Losurdo - INFN Firenze/Urbino on behalf of the Virgo Collaboration.
Equivalence relation between non spherical optical cavities and application to advanced G.W. interferometers. Juri Agresti and Erika D’Ambrosio Aims of.
Laguerre-Gauss Modes for Future Gravitational Wave Detectors Keiko Kokeyama University of Birmingham 2 nd ET Annual Erice, Sicily, Italy
Aspen Flat Beam Profile to Depress Thermal Noise J.Agresti, R. DeSalvo LIGO-G Z.
Beams of the Future Mihai Bondarescu, Oleg Kogan, Yanbei Chen, Andrew Lundgreen, Ruxandra Bondarescu, David Tsang A Caltech - AEI - Cornell Collaboration.
1 DC readout for Virgo+? E. Tournefier WG1 meeting, Hannover January 23 rd,2007 DC vs AC readout: technical noises Output mode cleaner for DC readout.
Some considerations on radiative cooling V. Fafone, Y. Minenkov, I. Modena, A. Rocchi INFN Roma Tor Vergata.
Jean-Yves Vinet CNRS-ARTEMIS Observatoire de la Côte d’Azur Effects In cavity mirrors.
ILIAS - Geneve1 Input mirrors thermal lensing effect in Virgo J. Marque.
The VIRGO detection system
Department of Physics & Astronomy Institute for Gravitational Research Scottish Universities Physics Alliance Brownian thermal noise associated with attachments.
The Proposed Holographic Noise Experiment Rainer Weiss, MIT On behalf of the proposing group Fermi Lab Proposal Review November 3, 2009.
1 Cascina – October 19, 2011 ASPERA Forum Laurent Pinard Substrates, Polishing, Coatings and Metrology for the 2 nd generation of GW detector Laurent PINARD.
A look at interferometer topologies that use reflection gratings
Daniel Sigg, Commissioning Meeting, 11/11/16
Quantum noise reduction using squeezed states in LIGO
The Proposed Holographic Noise Experiment
Topology comparison RSE vs. SAGNAC using GWINC
Thermal noise reduction through LG modes
Ponderomotive Squeezing Quantum Measurement Group
Flat-Top Beam Profile Cavity Prototype: design and preliminary tests
Modeling of Advanced LIGO with Melody
First Results from the Mesa Beam Profile Cavity Prototype
Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B
3rd generation ITF sensitivity curve
Flat-Top Beam Profile Cavity Prototype
Advanced Virgo ISC subsystem
Presentation transcript:

1 Thermal noise and high order Laguerre-Gauss modes J-Y. Vinet, B. Mours, E. Tournefier GWADW meeting, Isola d’Elba May 27 th – Jun 2 nd, 2006

2 Introduction Mirror thermal noise will limit the interferometers sensitivities around few 100 Hz Thermal noise is smaller with more uniformly distributed power => Spherical-spherical cavities instead of flat-spherical cavities (LIGO-Virgo case) => Flat beams Flat beam issues: –Production of flat beams –Production of “Mexican hat” mirrors –More coating thermal noise?  What can be gained with high order Laguerre-Gauss modes? - Advantage: use classical mirrors

3 Mirror thermal noise Mirror bulk thermal noise estimated with the BHV model (Phys. Lett A 246 (1998) 227) Displacement noise: U : Strain energy of the mirror under a pressure distribution having the profile of the readout beam Thermal noise smaller for flatter profiles Loss angle LG(0,0) w0=5cm LG(0,3) w0=5cm LG(2,2) w0=5cm Flat w=11.3 cm LG(5,5)

4 Diffraction losses Potential problem with high order modes: diffraction losses  Ensure that diffraction losses stay below 1 ppm a/ use spherical-spherical cavities with Virgo type mirrors (  35 cm) b/ for each mode adjust the waist size so that diffraction losses = 1 ppm Diffraction losses a/w = Mirror diameter / beam waist Order n of LG(n,m) a/w for 1 ppm losses m=0, 1, 2, 3, 4, 5 1 ppm

5 Flat beam w=11.3cm Thermal noise reduction Reduction of thermal noise with respect to present Virgo configuration Ratio of thermal noise: LG(n,m) in spherical-spherical cavity / TEM00 w=2cm => Thermal noise reduced by a factor 3 to 5 with respect to present configurations => Can reach results even better than flat beams with w=11.3 cm ! Order n of LG(n,m) m=0, 1, 2, 3, 4, 5 Thermal noise reduction TEM00 w0=6.7cm

6 Advantages / Issues Optics: –Mirrors uniformity on large diameter –Large but standard optics (spherical mirrors, mode cleaners,…) –Cavities compatible with TEM00 beam Production of high order Laguerre-Gauss modes: –With a fiber laser: Bragg fibers can produce LG modes –Diffractive optical elements (DOE) ? Error signals: –Longitudinal locking: in principle no difference with TEM00 –Alignment: higher order modes more sensitive to misalignments

7 Alignment/matching issues Mis-alignments Beam waist mis-matching Dominantly couples to non-degenerated modes => can be cleaned up by output mode cleaner Losses larger than for (0,0) mode => more stringent constraints on misalignments / matching Example LG(2,2) vs (0,0) mode: - alignment: should be 2-3 times more precise - waist: should be 4 times more precisely matched LG(0,0) w0=5cm LG(2,2) w0=5cm misalignment  X (cm) Coupling to cavity

8 Conclusions High order modes seem to be a good alternative to flat beams –Thermal noise can be comparable to or even lower than flat beams –Standard spherical optics can be used –Losses: slightly larger constraints on alignment than with TEM00 –Not too risky: optics compatible with standard TEM00 beam