1/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University,

Slides:



Advertisements
Similar presentations
1/10Boris Tomášik: Identifying fireball fragmentation with the Kolmogorov-Smirnov test Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia.
Advertisements

A method of finding the critical point in finite density QCD
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point June 26,
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Phase transition of hadronic matter in a non-equilibrium approach Graduate Days, Frankfurt, , Hannah Petersen, Universität Frankfurt.
First Results From a Hydro + Boltzmann Hybrid Approach DPG-Tagung, Darmstadt, , Hannah Petersen, Universität Frankfurt.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
STAR Patricia Fachini 1 Brookhaven National Laboratory Motivation Data Analysis Results Conclusions Resonance Production in Au+Au and p+p Collisions at.
Luan Cheng (Institute of Particle Physics, Huazhong Normal University) I. Introduction II. Interaction Potential with Flow III. Flow Effects on Light Quark.
Hagedorn states and Thermalization DM2010, High Density Nuclear Matter, Stellenbosch, South Africa (courtesy L. Ferroni)
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Jet Propagation and Mach-Cone Formation in (3+1)-dimensional Ideal Hydrodynamics Barbara Betz Thanks goes to: Miklos Gyulassy, Igor Mishustin, Jorge Noronha,
Phase Fluctuations near the Chiral Critical Point Joe Kapusta University of Minnesota Winter Workshop on Nuclear Dynamics Ocho Rios, Jamaica, January 2010.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
Dilepton production in HIC at RHIC Energy Haojie Xu( 徐浩洁 ) In collaboration with H. Chen, X. Dong, Q. Wang Hadron2011, WeiHai Haojie Xu( 徐浩洁 )
QCD Phase Diagram from Finite Energy Sum Rules Alejandro Ayala Instituto de Ciencias Nucleares, UNAM (In collaboration with A. Bashir, C. Domínguez, E.
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
1 On the importance of nucleation for the formation of quark cores inside compact stars Bruno Werneck Mintz* Eduardo Souza Fraga Universidade Federal do.
Revealing Baryon Number Fluctuations in Heavy Ion Collisions Masakiyo Kitazawa (Osaka U.) MK, M. Asakawa, arXiv: [nucl-th]
M. Beitel, K. Gallmeister, CG, arXiv: in collaboration with: M. Beitel, K. Gallmeister and J. Noronha-Hostler - history of Hagedorn States - nuclear.
Using Higher Moments of Fluctuations and their Ratios in the Search for the QCD Critical Point Christiana Athanasiou, MIT 4 work with: Krishna Rajagopal.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
The J/  as a probe of Quark-Gluon Plasma Erice 2004 Luciano MAIANI Università di Roma “La Sapienza”. INFN. Roma.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Workshop for Particle Correlations and Femtoscopy 2011
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
Higher moments of net-charge multiplicity distributions at RHIC energies in STAR Nihar R. Sahoo, VECC, India (for the STAR collaboration) 1 Nihar R. Sahoo,
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Deqing Fang, Yugang Ma, Shaoxin Li, Chenlong Zhou
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Effect of curvature on confinement-deconfinement phase transition By Ashok Goyal & Deepak Chandra * Department of Physics & Astrophysics University of.
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
Christoph Blume University of Heidelberg
A Blast-wave Model with Two Freeze-outs Kang Seog Lee (Chonnam Nat’l Univ.)  Chemical and thermal analysis, done in a single model HIM
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Shear and Bulk Viscosities of Hot Dense Matter Joe Kapusta University of Minnesota New Results from LHC and RHIC, INT, 25 May 2010.
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Christina Markert Hot Quarks, Sardinia, Mai Christina Markert Kent State University Motivation Resonance in hadronic phase Time R AA and R dAu Elliptic.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
JET Collaboration Meeting June 17-18, 2014, UC-Davis1/25 Flow and “Temperature” of the Parton Phase from AMPT Zi-Wei Lin Department of Physics East Carolina.
Bulk properties at RHIC Olga Barannikova (Purdue University) Motivation Freeze-out properties at RHIC STAR perspective STAR  PHENIX, PHOBOS Time-span.
QM08, Jaipur, 9 th February, 2008 Raghunath Sahoo Saturation of E T /N ch and Freeze-out Criteria in Heavy Ion Collisions Raghunath Sahoo Institute of.
Christina MarkertHirschegg, Jan 16-22, Resonance Production in Heavy Ion Collisions Christina Markert, Kent State University Resonances in Medium.
3 rd Joint Meeting of the Nuclear Physics Divisions of the APS and the JPS October 15 th 2009, Hawaii USA Akihiko Monnai Department of Physics, The University.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
ICPAQGP 2010 Goa, Dec. 6-10, Percolation & Deconfinement Brijesh K Srivastava Department of Physics Purdue University USA.
Chiho Nonaka QM2009 Nagoya University Chiho NONAKA March 31, Matter 2009, Knoxville, TN In collaboration with Asakawa, Bass, and Mueller.
1/10 Boris Tomášik: Contribution of hard processes to elliptic flow Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia and Czech Technical.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
Blast-wave fits with resonances to pt spectra from Pb+Pb collisions at √sNN = 2.76 TeV Ivan Meloa,b, Boris Tomášikb,c aŽilinská Univerzita, Žilina, Slovakia.
Ivan Melo (Žilina) in collaboration with
Freeze-out state from analysis of transverse momentum spectra in Pb+Pb collisions at 2.76 ATeV Ivan Meloa,c, Boris Tomášika,b aUniverzita Mateja Bela,
Hydro + Cascade Model at RHIC
Ivan Melo, Mikuláš Gintner Žilina in collaboration with
Effects of Bulk Viscosity at Freezeout
Introduction Results Methods Conclusions
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
Fu Jinghua Institute of Particle Physics, Huazhong Normal University
Presentation transcript:

1/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Boris Tomášik Univerzita Mateja Bela, Banská Bystrica, Slovakia Czech Technical University, Prague, Czech Republic in collaboration with Ivan Melo (University of Žilina)‏ Giorgio Torrieri (Universität Frankfurt)‏ Igor Mishustin (FIAS Frankfurt)‏ Martin Schulc (FNSPE CTU Prague)‏ Pavol Bartoš (UMB Banská Bystrica)‏ Mikuláš Gintner (University of Žilina)‏ Samuel Koróny (UMB Banská Bystrica)‏ Dense Matter in Heavy Ion Collisions and Astrophysics Dubna July 2008 Fragmentation of the Fireball and its Signatures

2/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Fragmentation: where and how to see it Fragmentation at 1 st order PT: spinodal decomposition at crossover: due to bulk viscosity How to see it? Look for differing rapidity distributions Look at rapidity correlations...

3/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Spinodal fragmentation at the phase transition p V Example: Van der Waals slow expansion: equilibrium trajectory fast expansion spinodal phase transition spinodal Example: linear sigma model coupled to quarks [O. Scavenius et al., Phys. Rev. D 63 (2001) ] What is fast? bubble nucleation rate < expansion rate

4/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures eg. [L. Csernai, J. Kapusta: Phys. Rev. Lett. 69 (1992) 737] nucleation rate: difference in free energy: critical size bubble: at phase transition => must supercool Bubble nucleation rate

5/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Supercooling down to spinodal O. Scavenius et al., Phys. Rev. D 63 (2001) : compare nucleation rate with Hubble constant (1D)‏ likely to reach spinodal

6/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures The size of droplets [I.N. Mishustin, Phys. Rev. Lett. 82 (1998), 4779; Nucl. Phys. A681 (2001), 56c] Minimize thermodynamic potential per volume where this gives also [D.E. Grady, J.Appl.Phys. 53 (1982) 322]

7/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Bulk viscosity near T c Bulk viscosity increases near T c : [K. Paech, S. Pratt, Phys. Rev. C 74 (2006) , D. Kharzeev, K. Tuchin, arxiv: [hep-ph]. F.Karsch, D.Kharzeev, K.Tuchin, Phys. Lett. B 663 (2008) 217] Kubo formula for bulk viscosity: From lattice QCD, using low energy theorems:

8/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Bulk-viscosity-driven fragmentation (s)QGP expands easily Bulk viscosity singular at critical temperature System becomes rigid Inertia may win and fireball will fragment Fragments evaporate hadrons... and freeze-out

9/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures “Sudden viscosity” => fragmentation Energy-momentum tensor energy density decrease rate fragment size: kinetic energy = dissipated energy where Almost universal size!

10/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Fragmentation and freeze-out: HBT puzzle Cooper-Frye from FO hypersurface < 0 Evaporation from droplets

11/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Droplets and rapidity distributions rapidity distribution in a single event y dN/dy y without droplets with droplets If we have droplets, each event will look differently

12/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures The measure of difference between events Kolmogorov–Smirnov test: Are two empirical distributions generated from the same underlying probability distribution? y 0 1 D maximum distance D measures the difference of two empirical distributions

13/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Kolmogorov-Smirnov: theorems How are the D's distributed? Smirnov (1944): If we have two sets of data generated from the same underlying distribution, then D 's are distributed according to This is independent from the underlying distribution! For each t=D we can calculate For events generated from the same distribution, Q 's will be distributed uniformly.

14/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Droplet generator QuaG MC generator of (momenta and positions of) particles BT: arXiv: [nucl-th] some particles are emitted from droplets (clusters) droplets are generated from a blast-wave source (tunable parameters) droplets decay exponentially in time (tunable time, T) tunable size of droplets: Gamma-distributed or fixed no overlap of droplets also directly emitted particles (tunable amount) chemical composition: equilibrium, resonances rapidity distribution: uniform or Gaussian possible OSCAR output

15/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Droplet generator: rapidity spectra T = 175 MeV, various droplet sizes, all particles from droplets No difference in distributions summed over all events!

16/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures 2 fm 3 Droplet generator: all from droplets QQ QQ 20 fm 3 10 fm 3 average droplet volume 50 fm 3 Events are clearly different!

17/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Droplet generator: part from droplets from droplets 20% V = 10 fm 3 40% 60%80% Method is very sensitive: clusters are always seen

18/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Droplet generator: smeared rapidities V = 2 fm 3 V = 10 fm 3 V = 20 fm 3 V = 50 fm 3 Δy = 0.4 Clusters seen even for unprecise measurement

19/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Proton-proton rapidity correlations Motivation: S. Pratt, PRC 49 (1994) 2722; J. Randrup, Heavy Ion Phys. 22 (2005) 69 Only correlations due to droplets included RHIC settings, STAR acceptance Resonances weaken the signal b = 10fm 3 varying droplets percentage Simulation with resonances 100% from droplets

20/20 Boris Tomášik: Fragmentation of the Fireball and its Signatures Conclusions Fragmentation of the fireball: due to spinodal decomposition (lower energies) bulk-viscosity driven Fragments can be seen: KS method – different rapidity distributions Femtoscopy Rapidity correlations Fluctuations...