Warm Up 1. y = 2x – y = 3x y = –3x2 + x – 2, when x = 2

Slides:



Advertisements
Similar presentations
Objectives Find the zeros of a quadratic function from its graph.
Advertisements

Properties of Quadratic Functions in Standard Form
If the leading coefficient of a quadratic equation is positive, then the graph opens upward. axis of symmetry f(x) = ax2 + bx + c Positive #
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
9-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Solving Quadratic Equations by Graphing 9-5
Graphing Quadratic Functions
Quadratics Functions Review/Notes
Warm Up 1. Evaluate x2 + 5x for x = 4 and x = –3. 36; –6
Give the coordinate of the vertex of each function.
Objectives Find the zeros of a quadratic function from its graph.
Give the coordinate of the vertex of each function.
9.2 Key Features of a Parabola
Quadratic Functions. Definition of a Quadratic Function  A quadratic function is defined as: f(x) = ax² + bx + c where a, b and c are real numbers and.
Characteristics of Quadratic Functions. Recall that an x-intercept of a function is a value of x when y = 0. A zero of a function is an x- value that.
9-2 Characteristics of Quadratic Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form This shows that parabolas are symmetric curves. The axis of symmetry is.
Objectives Solve quadratic equations by graphing or factoring.
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Objectives Solve quadratic equations by graphing or factoring.
Over Chapter 8 A.A B.B C.C D.D 5-Minute Check 2 (2z – 1)(3z + 1) Factor 6z 2 – z – 1, if possible.
9-1 Quadratic Equations and Functions 9-2 Characteristics of Quadratic Functions 9-3 Graphing Quadratic Functions 9-4 Solving Quadratic Equations by Graphing.
Definitions 4/23/2017 Quadratic Equation in standard form is viewed as, ax2 + bx + c = 0, where a ≠ 0 Parabola is a u-shaped graph.
9-2 Characteristics of Quadratic Functions Recall that an x-intercept of a function is a value of x when y = 0. A zero of a function is an x- value that.
Objectives Vocabulary zero of a function axis of symmetry
Give the coordinate of the vertex of each function.
Holt McDougal Algebra Graphing Quadratic Functions Graph a quadratic function in the form y = ax 2 + bx + c. Objective.
Characteristics of Quadratics
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form Warm Up Give the coordinate of the vertex of each function. 2. f(x) = 2(x.
Warm Up 1. y = 2x – y = 3x y = –3x2 + x – 2, when x = 2
9-3 Graphing Quadratic Functions Warm Up Warm Up Lesson Presentation Lesson Presentation California Standards California StandardsPreview.
Graphing Quadratic Functions
Grade 8 Algebra I Characteristics of Quadratic Functions
Holt McDougal Algebra Characteristics of Quadratic Functions Warm Up Find the x-intercept of each linear function. 1. y = 2x – y = 3x + 6.
WARM-UP: Graphing Using a Table x y = 3x  2 y -2 y = 3(-2)  2 -8 y = 3(-1)  y = 3(0)  y = 3(1)  y = 3(2)  2 4 GRAPH. y = 3x 
QUADRATIC FUNCTIONS. IN THE QUADRATIC FUNCTION Y = AX 2 + BX + C…  What does the “a” tell you?  The width of the parabola  The greater the |a| the.
Unit 10 – Quadratic Functions Topic: Characteristics of Quadratic Functions.
Warm Up x = 0 x = 1 (–2, 1) (0, 2) Find the axis of symmetry.
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Key Components for Graphing a Quadratic Function.
Characteristics of Quadratic Functions CA 21.0, 23.0.
Standard Form of a Quadratic Function Lesson 4-2 Part 1
Algebra 2 Standard Form of a Quadratic Function Lesson 4-2 Part 1.
QUADRATIC FUNCTIONS. IN THE QUADRATIC FUNCTION Y = AX 2 + BX + C…  What does the “a” tell you?  The width of the parabola  The greater the |a| the.
Lesson 8-1 :Identifying Quadratic Functions Lesson 8-2 Characteristics of Quadratic Functions Obj: The student will be able to 1) Identify quadratic functions.
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Welcome! Grab a set of interactive notes and study Guide
5-3 Solving Quadratic Equations by Graphing and Factoring Warm Up
Warm Up /05/17 1. Evaluate x2 + 5x for x = -4 and x = 3. __; ___
Warm Up /31/17 1. Evaluate x2 + 5x for x = 4 and x = –3. __; ___
9-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Quadratic Functions Unit 6.
Warm Up Label the Vertex, Axis of Symmetry, Zeros and Max/Min.
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Before: March 15, 2018 Tell whether the graph of each quadratic function opens upward or downward. Explain. y = 7x² - 4x x – 3x² + y = 5 y = -2/3x².
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Warm Up Evaluate (plug the x values into the expression) x2 + 5x for x = 4 and x = –3. 2. Generate ordered pairs for the function y = x2 + 2 with the.
Objectives Find the zeros of a quadratic function from its graph.
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Warm Up 1. y = 2x – y = 3x y = –3x2 + x – 2, when x = 2
Real World Problem Solving Quadratic Equations 8
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
8-2 Characteristics of Quadratic Functions Warm Up Lesson Presentation
Warm Up Find the x-intercept of each linear function.
Presentation transcript:

Warm Up 1. y = 2x – 3 2. 3. y = 3x + 6 4. y = –3x2 + x – 2, when x = 2 Find the x-intercept of each linear function. 1. y = 2x – 3 2. 3. y = 3x + 6 Evaluate each quadratic function for the given input values. 4. y = –3x2 + x – 2, when x = 2 5. y = x2 + 2x + 3, when x = –1 –2 –12 2

9-2 Characteristics of Quadratic Functions Holt Algebra 1

Recall that an x-intercept of a function is a value of x when y = 0. A zero of a function is an x-value that makes the function equal to 0.

Example 1A: Finding Zeros of Quadratic Functions From Graphs Find the zeros of the quadratic function from its graph. Check your answer. y = x2 – 2x – 3 y = (–1)2 – 2(–1) – 3 = 1 + 2 – 3 = 0 y = 32 –2(3) – 3 = 9 – 6 – 3 = 0 y = x2 – 2x – 3 Check  The zeros appear to be –1 and 3.

Example 1B: Finding Zeros of Quadratic Functions From Graphs Find the zeros of the quadratic function from its graph. Check your answer. y = x2 + 8x + 16 Check y = x2 + 8x + 16 y = (–4)2 + 8(–4) + 16 = 16 – 32 + 16 = 0  The zero appears to be –4.

Example 1C: Finding Zeros of Quadratic Functions From Graphs Find the zeros of the quadratic function from its graph. Check your answer. y = –2x2 – 2 The graph does not cross the x-axis, so there are no zeros of this function.

A vertical line that divides a parabola into two symmetrical halves is the axis of symmetry. The axis of symmetry always passes through the vertex of the parabola.

Example 2: Finding the Axis of Symmetry by Using Zeros Find the axis of symmetry of each parabola. A. (–1, 0) Identify the x-coordinate of the vertex. The axis of symmetry is x = –1. B. Find the average of the zeros. The axis of symmetry is x = 2.5.

Example 3: Finding the Axis of Symmetry by Using the Formula Find the axis of symmetry of the graph of y = –3x2 + 10x + 9. Step 1. Find the values of a and b. Step 2. Use the formula. y = –3x2 + 10x + 9 a = –3, b = 10 The axis of symmetry is

Example 4B: Finding the Vertex of a Parabola Find the vertex. y = –3x2 + 6x – 7 Step 1 Find the x-coordinate of the vertex. a = –3, b = 10 Identify a and b. Substitute –3 for a and 6 for b. The x-coordinate of the vertex is 1.

Example 4B Continued Find the vertex. y = –3x2 + 6x – 7 Step 2 Find the corresponding y-coordinate. y = –3x2 + 6x – 7 Use the function rule. = –3(1)2 + 6(1) – 7 Substitute 1 for x. = –3 + 6 – 7 = –4 Step 3 Write the ordered pair. The vertex is (1, –4).

3.

Lesson Quiz: Part I 1. Find the zeros and the axis of symmetry of the parabola. 2. Find the axis of symmetry and the vertex of the graph of y = 3x2 + 12x + 8. zeros: –6, 2; x = –2 x = –2; (–2, –4)

Lesson Quiz: Part II 3. The graph of f(x) = –0.01x2 + x can be used to model the height in feet of a curved arch support for a bridge, where the x-axis represents the water level and x represents the distance in feet from where the arch support enters the water. Find the height of the highest point of the bridge. 25 feet

Warm-Up(Add to HW) 1. Find the zeros and the axis of symmetry of the parabola. 2. Find the axis of symmetry and the vertex of the graph of y = 3x2 + 12x + 8. zeros: –6, 2; x = –2 x = –2; (–2, –4)