Chapter 9.1 Notes. Quadratic Function – An equation of the form ax 2 + bx + c, where a is not equal to 0. Parabola – The graph of a quadratic function.

Slides:



Advertisements
Similar presentations
Vocabulary axis of symmetry standard form minimum value maximum value.
Advertisements

Quadratic Functions.
If the leading coefficient of a quadratic equation is positive, then the graph opens upward. axis of symmetry f(x) = ax2 + bx + c Positive #
Objectives Identify quadratic functions and determine whether they have a minimum or maximum. Graph a quadratic function and give its domain and range.
Quadratic graphs Today we will be able to construct graphs of quadratic equations that model real life problems.
Quadratic Functions.
9-1 Graphing Quadratic Functions
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
5.1 Modeling Data with Quadratic Functions 1.Quadratic Functions and Their Graphs.
You can use a quadratic polynomial to define a quadratic function A quadratic function is a type of nonlinear function that models certain situations.
Quadraticsparabola (u-shaped graph) y = ax2 y = -ax2 Sketching Quadratic Functions A.) Opens up or down: 1.) When "a" is positive, the graph curves upwards.
And the Quadratic Equation……
Topic: U2 L1 Parts of a Quadratic Function & Graphing Quadratics y = ax 2 + bx + c EQ: Can I identify the vertex, axis of symmetry, x- and y-intercepts,
Quadratic Functions. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below. If the coefficient.
The General Quadratic Function Students will be able to graph functions defined by the general quadratic equation.
Quadratic Functions Objectives: Graph a Quadratic Function using Transformations Identify the Vertex and Axis of Symmetry of a Quadratic Function Graph.
10.1 Graphing Quadratic Functions p. 17. Quadratic Functions Definition: a function described by an equation of the form f(x) = ax 2 + bx + c, where a.
Holt McDougal Algebra Properties of Quadratic Functions in Standard Form This shows that parabolas are symmetric curves. The axis of symmetry is.
Over Chapter 8 A.A B.B C.C D.D 5-Minute Check 2 (2z – 1)(3z + 1) Factor 6z 2 – z – 1, if possible.
Do Now: Pass out calculators. Work on Practice EOC Week # 12 Write down your assignments for the week for a scholar dollar.
Graphing Quadratic Equations Standard Form & Vertex Form.
Graphing Quadratic Functions Definitions Rules & Examples Practice Problems.
9.3 Graphing Quadratic Functions
Graphing Quadratic Equations
Splash Screen. Lesson Menu Five-Minute Check (over Chapter 8 ) CCSS Then/Now New Vocabulary Key Concept: Quadratic Functions Example 1: Graph a Parabola.
Give the coordinate of the vertex of each function.
Graphing Quadratic Functions
Graphing Quadratic Functions Lesson 9-1 Splash Screen.
Ch. 4 Pre-test 1.Graph the function : y = – 4x 2 Then label the vertex and axis of symmetry. 2.Write the quadratic function in standard form : y = (x –
9.3 Graphing Quadratic Functions. Quadratic Functions Quadratic functions are functions written in the form Every quadratic function has a U-shaped graph.
2.3 Quadratic Functions. A quadratic function is a function of the form:
Lesson 10-1 Graphing Quadratic Functions. Objectives Graph quadratic functions Find the equation of the axis of symmetry and the coordinates of the vertex.
Characteristics of Quadratics
Unit 1: Function Families Lesson 5: Transformations & Symmetry Notes Graph y = ax 2 + bx + c.
GRAPHING QUADRATIC FUNCTIONS
Chapter 6-1 Graphing Quadratic Functions. Which of the following are quadratic functions?
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
Objectives Define, identify, and graph quadratic functions.
QUADRATIC FUNCTIONS IN STANDARD FORM 4.1B. Review  A quadratic function can be written in the form y = ax 2 + bx + c.  The graph is a smooth curve called.
Chapter 10 Sec 1 Graphing Quadratic Functions. 2 of 12 Algebra 1 Chapter 10 Sections 1 1.Find a =, b =, c =. 2.Find y intercept = (0, c). 3.Find Axis.
9.1 – Graphing Quadratic Functions. Ex. 1 Use a table of values to graph the following functions. a. y = 2x 2 – 4x – 5.
Unit 9 Review Find the equation of the axis of symmetry, along with the coordinates of the vertex of the graph and the y-intercept, for the following equation.
Fri 12/11 Lesson 4 – 1 Learning Objective: To graph quadratic functions Hw: Graphing Parabolas Day 1 WS.
9-3 Graphing y = ax + bx + c 2 1a. y = x - 1 for -3
Big Idea: -Graph quadratic functions. -Demonstrate and explain the effect that changing a coefficient has on the graph. 5-2 Properties of Parabolas.
Splash Screen.
Unit 1B Quadratics Day 2. Graphing a Quadratic Function EQ: How do we graph a quadratic function in standard form? M2 Unit 1B: Day 2 Lesson 3.1A.
5-1 Graphing Quadratic Functions Algebra II CP. Vocabulary Quadratic function Quadratic term Linear term Constant term Parabola Axis of symmetry Vertex.
Quadratic Functions. 1. The graph of a quadratic function is given. Choose which function would give you this graph:
How does the value of a affect the graphs?
Quadratic Functions A quadratic function is described by an equation of the following form: ax² + bx + c, where a ≠ 0 The graphs of quadratic functions.
Quadratic Functions Sections Quadratic Functions: 8.1 A quadratic function is a function that can be written in standard form: y = ax 2 + bx.
Key Components for Graphing a Quadratic Function.
Quadratic Functions PreCalculus 3-3. The graph of any quadratic function is called a parabola. Parabolas are shaped like cups, as shown in the graph below.
How To Graph Quadratic Equations Standard Form.
Determine if each is a quadratic equation or not.
Quadratic Equations Chapter 5.
Chapter 4: Quadratic Functions and Equations
1.The standard form of a quadratic equation is y = ax 2 + bx + c. 2.The graph of a quadratic equation is a parabola. 3.When a is positive, the graph opens.
9.1 Graphing Quadratic Functions
3.1 Quadratic Functions and Models
Warm Up Graph:
Review: Simplify.
3.1 Quadratic Functions and Models
Graphing Quadratic Functions
Obj: graph parabolas in two forms
4.1 Notes – Graph Quadratic Functions in Standard Form
Section 10.2 “Graph y = ax² + bx + c”
Determine if each is a quadratic equation or not.
How To Graph Quadratic Equations.
Presentation transcript:

Chapter 9.1 Notes

Quadratic Function – An equation of the form ax 2 + bx + c, where a is not equal to 0. Parabola – The graph of a quadratic function. Axis of Symmetry – The vertical line containing the vertex of a parabola. Vertex – The maximum or minimum point of a parabola.

y = x 2 – x – 2 XY

y = x 2 + 2x + 3 A.B. C.D.

 -x 2 + 3x – 7  x 2 - 7x + 8  -3x x – 9

y = –2x 2 – 8x – 2

Graph the function f(x) = –x 2 + 5x – 2. Step 1Find the equation of the axis of symmetry. Formula for the equation of the axis of symmetry a = –1 and b = 5 Simplify. or 2.5

f(x)= –x 2 + 5x – 2Original equation Step 2Find the vertex, and determine whether it is a maximum or minimum. = 4.25Simplify. The vertex lies at (2.5, 4.25). Because a is negative the graph opens down, and the vertex is a maximum. = –(2.5) 2 + 5(2.5) – 2x = 2.5

f(x)= –x 2 + 5x – 2Original equation = –(0) 2 + 5(0) – 2x = 0 = –2Simplify. The y-intercept is –2. Step 3Find the y-intercept.

Step 4The axis of symmetry divides the parabola into two equal parts. So if there is a point on one side, there is a corresponding point on the other side that is the same distance from the axis of symmetry and has the same y-value.

Answer: Step 5Connect the points with a smooth curve.

x 2 + 2x – 3 Step 1: Axis of Symmetry Step 2: Vertex, Max or Min? Step 3: Y-intercept Step 4: Plot Points Step 5: Connect with Smooth Curve

1-12, 17-20