HFI/NQI 2010 (September 14, 2010, Geneva) Investigations on Thin Fe Films and Heusler Alloy Films Using Synchrotron-Radiation-Based Mössbauer Spectroscopy.

Slides:



Advertisements
Similar presentations
Imaging the Magnetic Spin Structure of Exchange Coupled Thin Films Ralf Röhlsberger Hamburger Synchrotronstrahlungslabor (HASYLAB) am Deutschen Elektronen.
Advertisements

KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary L. Deák Magnetic domains: theory and evaluation of diffuse resonant photon.
Ion beam Analysis Joele Mira from UWC and iThemba LABS Tinyiko Maluleke from US Supervisor: Dr. Alexander Kobzev Dr. Alexander Kobzev.
Bragg’s Law nl=2dsinΘ Just needs some satisfaction!! d Θ l
Stanford Synchrotron Radiation Lightsource Sources and Optics for XAS Apurva Mehta.
Slide: 1 HSC17: Dynamical properties investigated by neutrons and synchrotron X-rays, 16 Sept
Influence of Substrate Surface Orientation on the Structure of Ti Thin Films Grown on Al Single- Crystal Surfaces at Room Temperature Richard J. Smith.
When an nucleus releases the transition energy Q (say 14.4 keV) in a  -decay, the  does not carry the full 14.4 keV. Conservation of momentum requires.
Atomic X-Ray Spectroscopy Chapter 12 X-ray range  Å to 100 Å Used  0.1Å to 25 Å.
GaAs radiation imaging detectors with an active layer thickness up to 1 mm. D.L.Budnitsky, O.B.Koretskaya, V.A. Novikov, L.S.Okaevich A.I.Potapov, O.P.Tolbanov,
Generation of short pulses
HARMONICALLY MODULATED STRUCTURES S. M. Dubiel * Faculty of Physics and Computer Science, AGH University of Science and Technology, PL Krakow, Poland.
X-ray Imaging of Magnetic Nanostructures and their Dynamics Joachim Stöhr Stanford Synchrotron Radiation Laboratory X-Rays have come a long way……
LCLS Studies of Laser Initiated Dynamics Jorgen Larsson, David Reis, Thomas Tschentscher, and Kelly Gaffney provided LUSI management with preliminary Specifications.
Absorption and emission processes
X-Ray Diffraction ME 215 Exp#1. X-Ray Diffraction X-rays is a form of electromagnetic radiation having a range of wavelength from nm (0.01x10 -9.
Cyclotron Resonance and Faraday Rotation in infrared spectroscopy
Christian Stamm Stanford Synchrotron Radiation Laboratory Stanford Linear Accelerator Center I. Tudosa, H.-C. Siegmann, J. Stöhr (SLAC/SSRL) A. Vaterlaus.
Chapter 25 Waves and Particles Midterm 4 UTC
4-1 Chap. 7 (Optical Instruments), Chap. 8 (Optical Atomic Spectroscopy) General design of optical instruments Sources of radiation Selection of wavelength.
Design on Target and Moderator of X- band Compact Electron Linac Neutron Source for Short Pulsed Neutrons Kazuhiro Tagi.
Observation of magnetic domains in LSMO thin films by XMCD-PEEM M. Oshima A, T. Taniuchi A, H. Kumigashira A, H. Yokoya B, T. Wakita C, H. Akinaga D, M.
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
Corey Thompson Technique Presentation 03/21/2011
Quantum Electronic Effects on Growth and Structure of Thin Films P. Czoschke, Hawoong Hong, L. Basile, C.-M. Wei, M. Y. Chou, M. Holt, Z. Wu, H. Chen and.
1 M. Aslam Baig National Center for Physics Quaid-i-Azam University Campus, Islamabad Pakistan
1 Femtosecond Time and Angle-Resolved Photoelectron Spectroscopy of Aqueous Solutions Toshinori Suzuki Kyoto University photoelectron.
III. Analytical Aspects Summary Cheetham & Day, Chapters 2, 3 Chemical Characterization of Solid-State Materials Chemical Composition: Bulk, Surface, …
Condensed Matter Physics Big Facility Physics26th Jan 2004 Sub Heading “Big Facility” Physics in Grenoble ESRF: X-rays ILL: neutrons.
Overview of course Capabilities of photonic crystals Applications MW 3:10 - 4:25 PMFeatheringill 300 Professor Sharon Weiss.
Nuclear Resonant Scattering of Synchrotron Radiation Dénes Lajos Nagy Thin Films as Seen by Local Probes ERASMUS Intensive Programme Frostavallen (Höör),
Nuclear Resonant Scattering of Synchrotron Radiation Dénes Lajos Nagy KFKI Research Institute for Particle and Nuclear Physics and Loránd Eötvös University,
Chapter 12 Atomic X-Ray Spectroscopy
Ion Beam Analysis Dolly Langa Physics Department, University of Pretoria, South Africa Blane Lomberg Physics Department, University of the Western Cape,
Quantum Electronic Structure of Atomically Uniform Pb Films on Si(111) Tai C. Chiang, U of Illinois at Urbana-Champaign, DMR Miniaturization of.
Yibin Xu National Institute for Materials Science, Japan Thermal Conductivity of Amorphous Si and Ge Thin Films.
Colossal Magnetoresistance of Me x Mn 1-x S (Me = Fe, Cr) Sulfides G. A. Petrakovskii et al., JETP Lett. 72, 70 (2000) Y. Morimoto et al., Nature 380,
Atomic Scale Understanding of the Surface Intermixing during Thin Metal Film Growth 김상필 1,2, 이승철 1, 정용재 2, 이규환 1, 이광렬 1 1 한국과학기술연구원, 계산과학센터 2 한양대학교, 재료공학부.
PHYS 430/603 material Laszlo Takacs UMBC Department of Physics
Other modes associated with SEM: EBIC
Ultrafast Carrier Dynamics in Graphene M. Breusing, N. Severin, S. Eilers, J. Rabe and T. Elsässer Conclusion information about carrier distribution with10fs.
Magnetization dynamics
Surface Structure Analysis in Ⅰ ) Low Energy Ion Scattering Ⅱ ) Medium Energy Ion Scattering Simultaneous Determination of Atomic Arrangement (not only.
Observation of ultrafast response by optical Kerr effect in high-quality CuCl thin films Asida Lab. Takayuki Umakoshi.
X-Ray Scattering with synchrotron radiation E. Ercan Alp Advanced Photon Source Argonne National Laboratory, Argonne, Illinois JASS’02, October 19-28,
Anne-Laure Fehrembach, Fabien Lemarchand, Anne Sentenac,
Observation of ultrafast nonlinear response due to coherent coupling between light and confined excitons in a ZnO crystalline film Ashida Lab. Subaru Saeki.
Gamma-induced positron lifetime and age-momentum
E R(nr) non- resonant reflection (resonant) atomic response windo w dilute vapou r I R = | E R(nr) + E at | ² (non-resonnant) reflection at the interface.
Basics of Ion Beam Analysis
Dynamics of proteins Mössbauer spectroscopy in energy and time K. Achterhold and F.G. Parak Physik-Department E17 Technische Universität München James-Franck.
Ch 10 Pages ; Lecture 24 – Introduction to Spectroscopy.
1.1 What’s electromagnetic radiation
Mineral Spectroscopy Visible Infrared Raman Mössbauer NMR.
Next Generation Science with Inelastic X-ray Scattering
New emission Mössbauer spectroscopy studies at ISOLDE in 2015 Haraldur Páll Gunnlaugsson, Torben E. Mølholt, Karl Johnston, Juliana Schell, The Mössbauer.
Conclusions References 1. A. Galimberti et al., Nucl. Instrum. Meth. A 477, (2002). 2. F. Capotondi et al., Thin Solid Films 484, (2005).
1 Phase diffraction gratings for the transformation of neutron energy A. Frank FLNP of JINR, Dubna, Russia 3rd Workshop on Physics of Fundamental Symmetries.
Characterization of mixed films
EXAFS-spectroscopy method in the condensed matter physics: First results on energy-dispersive EXAFS station in RSC “Kurchatov Institute” Vadim Efimov Joint.
References [1] Röhlsberger, Toellner, Sturhahn, Quast, Alp, Bernhard, Burkel, Leupold, Gerdau; Phys. Rev. Lett. 84 (2000); p [2] Röhlsberger, Quast,
Mossbauer spectroscopy
Polarization Dependence in X-ray Spectroscopy and Scattering
S.V. Blazhevich1), I.V. Kolosova2), A.V. Noskov2)
P. Alexeev1, H. -C. Wille1, O. Leupold1, I. Sergueev1, M
Experimental determination of isospin mixing in nuclear states;
Co-Al 시스템의 비대칭적 혼합거동에 관한 이론 및 실험적 고찰
Sang-Pil Kim and Kwang-Ryeol Lee Computational Science Center
Ion-beam, photon and hyperfine methods in nano-structured materials
O. Leupold, H. C. Wille, I. Sergueev, M. Herlitschke, P. Alexeev, C
Presentation transcript:

HFI/NQI 2010 (September 14, 2010, Geneva) Investigations on Thin Fe Films and Heusler Alloy Films Using Synchrotron-Radiation-Based Mössbauer Spectroscopy K. Mibu Nagoya Institute of Technology JANAN

SPring-8 APS ESRF Three world centers for synchrotron-based Mössbauer spectroscopy

CREST project for synchrotron-based Mössbauer spectroscopy FY 2005 ~ 2010 (~ JPY 400,000,000 / 5.5 years) M. Seto, Kyoto University Project Leader Y. Yoda, JASRI/SPring-8 Methodological improvements on the beam line T. Mitsui, Japan Atomic Energy Agency Methodological improvements on the beam line S. Kishimoto, High Energy Accelerator Research Institute (KEK) Improvements of detector systems H. Kobayashi, Hyogo Prefectural University Applications to material research (High pressures) K. Mibu, Nagoya Institute of Technology Applications to material research (Thin films & Nano-structures) (CREST = Core Research for Evolutional Science and Technology)

Outline Introduction * Quick introduction to synchrotron-radiation-based Mössbauer spectroscopy * Conventional Mössbauer spectroscopy for thin films and nano-structures * Background of the test samples (Fe films & Co 2 MnSn films) Results on Synchrotron-Radiation-Based Mössbauer Spectroscopy * Measurements in time domains for Fe films and Co 2 MnSn films * Measurements in energy domains using a nuclear Bragg monochromator for Fe films * Measurements in energy domains using a standard absorber for Co 2 MnSn films Conclusion - Focusing on the measurements of hyperfine fields for thin films -

Advantages and disadvantages of synchrotron radiation as a source for Mössbauer spectroscopy * Small beam size (Around 1 mm without focusing devices,10  m or less with focusing devices) * Low angular divergence * High intensity * Polarization * Pulse structures * Energy selectivity Special techniques are required to use synchrotron radiation as a source for Mössbauer spectroscopy. * Broad energy bandwidth (Wider than 1 meV even after monochromatization in general) Advantages Disadvantages

Historical Backgrounds * Proposal for the use of synchrotron radiation as a Mössbauer source S. L. Ruby Journal de Physique, Colloq. 35, C (1974) * Conclusive observation of Mössbauer spectra using synchrotron radiation and nuclear Bragg monochromator E. Gerdaw, R. Rüffer, H. Winkler, W. Tolksdorf, C. P. Klages, J. P. Hannon Phys. Rev. Lett. 54, 835 (1985) * Observation of time spectra for nuclear forward scattering (NFS) of synchrotron radiation J. B. Hastings, D. P. Siddons, U. van Bürck, R. Hollatz, U. Bergmann Phys. Rev. Lett. 66, 770 (1991) * Development of new method to measure Mössbauer spectra in energy domain using synchrotron radiation M. Seto, R. Masuda, S. Higashitaniguchi, S. Kitao. Y. Kobayashi, C. Inaba, T. Mitsui, Y. Yoda Phys. Rev. Lett. 102, (2009)

Conventional Mössbauer spectroscopic setups for for thin films and nano-structures on single crystal substrates Low-temperature CEMS system ~ 70 K (w/ He+2%CH 4 gas) ~ 30 K (w/ H 2 gas) Doppler velocity (mm/s) (Energy of  -rays) Counts Scattering geometry (CEMS geometry) Transmission geometry Oscillation Radioactive source  -rays Sample Proportional counter Internal conversion electrons e-e- Proportional counter Sample Oscillation Radioactive source  -rays * Small sample house full of counter gas  - rays 14.4 keV for 57 Fe or 23.8 keV for 119 Sn   Conversion electrons 7.3 keV for 57 Fe or 19.4 keV for 119 Sn Nagoya Inst. Tech.)

Advantages of synchrotron-radiation-based Mössbauer spectroscopy for the investigations on thin films and nano-structures 1. Easier to measure at low temperatures, in magnetic fields, with electric fields, and under other special sample conditions 2. Possible to detect in-plane magnetic anisotropy using the polarization characters 3. Not necessary to maintain radioactive sources, and applicable to all the Mössbauer nuclei in principle ☞ Large potential needs from the field of material science But ・・・ Difficult to get sufficient number of probe nuclei in the narrow beam path in comparison with the case of bulk powder or single crystal samples ☞ Required to measure in an oblique incidence (or grazing angle) geometry ☞ Sometimes necessary to enrich probe nuclei in the sample appropriately Magnetic field Sample Detector Cryostat NS Magnet Beam - In comparison with conversion electron Mössbauer spectroscopy (CEMS) using a radioactive source and a proportional gas counter –

Test samples and Mössbauer nuclei (1) Fe firms, nano-structures, monatomic layers (2) Co 2 MnSn Heusler alloy films For 57 Fe Mössbauer spectroscopy For 119 Sn Mössbauer spectroscopy  -rays 23.8 keV   119 Sn nuclear energy levels    -rays 14.4 keV  57 Fe nuclear energy levels Co Mn Sn Doppler velocity (mm/s) (Energy of  -rays) Counts 0 T 5 T 10 T 15 T Calculated CEMS spectra for various hyperfine fields Doppler velocity (mm/s) (Energy of  -rays) Counts Calculated CEMS spectrum 33 T Fe

Background of the test samples Preparation of L2 1 -type alloy films by atomically controlled alternate deposition * Control of local crystallographic structures * Control of interfacial atomic species * Stabilization of non-equilibrium phases (Top view) Co 2 MnSn (T c = 811 K,   5  B ) * Theoretically predicted to be “half metallic” (or w/ highly spin-polarized conduction electrons) * Promising materials for spin-electronics devices Heusler alloys with an L2 1 -type structure X (Co etc.) Y (Mn etc.) Z (Sn etc.) Strategy

Mössbauer spectra for Co 2 MnSn measured using a radioactive source Co Mn Sn Bulk Co 2 MnSn alloy prepared by arc-melting (Long range L2 1 order parameter = 0.9) L2 1 B2 Anti -site Similar spectra: J. M. Williams et al., J. Phys. C, 1 (1968) 473, etc. R. A. Dunlap et al., Can. J. Phys. 59 (1981) 1577, etc. A. G. Gavriliuk et al., J. Appl. Phys. 77 (1995) 2648.

Co 2 MnSn(40.2 nm) film prepared by atomically controlled alternate deposition ( T sub = 500 ℃ ) Mössbauer spectra for Co 2 MnSn measured using a radioactive source Sharp distribution !! Co Mn Sn Bulk Co 2 MnSn alloy prepared by arc-melting (Long range L2 1 order parameter = 0.9) L2 1 B2 Anti -site ☞ Available to investigate magnetic interface effect or size effect of Co 2 MnSn!!

Outline Introduction * Quick introduction to synchrotron-radiation-based Mössbauer spectroscopy * Conventional Mössbauer spectroscopy for thin films and nano-structures * Background of the test samples (Fe films & Co 2 MnSn films) Results on Synchrotron-Radiation-Based Mössbauer Spectroscopy * Measurements in time domains for Fe films and Co 2 MnSn films * Measurements in energy domains using a nuclear Bragg monochromator for Fe films * Measurements in energy domains using a standard absorber for Co 2 MnSn films Conclusion - Focusing on the measurements of hyperfine fields for thin films -

Setups of synchrotron-based Mössbauer spectroscopy Energy spectra Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator Energy spectra ( Energy dip in neV order + Doppler shift ) Monochromator Thin film sample Detector Pulsed X-rays High-resolution monochromator  E  meV Time spectra High efficiency Wide element-applicability Difficult distribution analysis For the investigations on thin films High efficiency Limited element-applicability ( 57 Fe only) Easy distribution analysis Medium efficiency Wide element-applicability Easy distribution analysis Detector Monochromator Nuclear Bragg monochromator 57 FeBO 3 Thin film sample Pulsed X-rays Oscillation High-resolution monochromator  E  neV (Super-monochromatization + Doppler shift) H

Time Intensity (log. Scale) Dependence of the “quantum beat” patterns on the direction of magnetic hyperfine field (rel. to the beam polarization) Measurements of nuclear resonant time spectra 14.4 keV 57 Fe nuclei   14.4 keV  100 ns Resonantly scattered X-rays (“delayed” signal) Pulsed X-rays Monochromator Thin film sample Detector Pulsed X-rays High-resolution monochromator  E  meV Time spectra Cited from R. Röhlsberger et al., J. Magn. Magn. Mater. 282, 329 (2004). * Interference beat frequency => Inversely proportional to the hyperfine field * Interference beat pattern => Dependent on the direction of hyperfine field

Nuclear resonant time spectra for Fe nanowires  30 nm X-rays (Parallel) X-rays (Perpendicular) 57 Fe wire ( 30 nm wide, 30 nm thick BL11XU, SPring-8 Excellent works on the determination of magnetization direction in thin film samples have been published by: ESRF group (e.g., R. Röhlsberger et al., Phys. Rev. Lett. 89, (2002)) APS group (e.g., C. L’abbé et al., Phys. Rev. Lett. 93, (2004)) Quantum beat + Dynamical beat

119 Sn keV Time spectrum 5 hrs. CEMS spectrum (w/ source) External field Cryostat NS Magnet 119 Sn nuclei Life time  18 ns keV Pulsed X-rays   keV Co 2 MnSn ( 40.2 nm ) w/ 119 Sn 50% (Prep. by atomically controlled alternate deposition) Nuclear resonant time spectrum for a “thick” Co 2 MnSn film Monochromator sample Detector Pulsed X-rays High-resolution monochromator  E  meV Time spectra Resonantly Scattered X-rays

x 4 Cr Co MnSn & Co MnSn & Co Cr MnSn & Co MnSn & Co MnSn & Cr Co MnSn & Co Cr MnSn & Co MnSn & x 6 x 400 o C 119 Sn total 1.2 nm ( ~ 6 atomic layers ) “Ultra-thin” Co 2 MnSn films for Mössbauer measurements

Co MnSn & Co MnSn & Co MnSn & Co Mn Sn & Co MnSn & Co MnSn & Co Mn Sn & Co MnSn & 119 Sn total 1.2 nm ( ~ 6 atomic layers ) Nuclear resonant time spectrum for “ultra-thin” Co 2 MnSn films Measurement time ~ 3 hrs./ each Smaller hyperfine fields

Setups of synchrotron-based Mössbauer spectroscopy Monochromator Thin film sample Detector Pulsed X-rays High-resolution monochromator  E  meV Time spectra Energy spectra Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator Energy spectra ( Energy dip in neV order + Doppler shift ) High efficiency Wide element-applicability Difficult distribution analysis For the investigations on thin films High efficiency Limited element-applicability ( 57 Fe only) Easy distribution analysis Medium efficiency Wide element-applicability Easy distribution analysis Detector Monochromator Nuclear Bragg monochromator 57 FeBO 3 Thin film sample Pulsed X-rays Oscillation High-resolution monochromator  E  neV (Super-monochromatization + Doppler shift) H

57 FeBO 3 single crystal Monochromatized incident beam ΔE > meV Super-monochromatized beam ΔE ~ 10 neV E e1 EgEg 14.4keV G. V. Smirnov et al., JETP Lett. 43, 352(1986). A. I. Chumakov et al., Phys. Rev. B 41, 9545(1990). G. V. Smirnov et al., Phys. Rev. B 55, 5811(1997). G. V. Smirnov, Hyperfine Interactions 125, 91(2000). Single-line Mössbauer source using nuclear Bragg reflection Use of electronically forbidden but nuclear allowed Bragg reflection from an antiferromagnetic single crystal kept near the Néel temperature (Available only for 57 Fe) + Doppler shift with oscillating the 57 FeBO 3 or the sample  Spectrum in energy domain

Strategy for the use of nuclear Bragg monochromator for the studies on thin films and nano-structures Key techniques: T. Mitsui, M. Seto, R. Masuda, Jpn. J. Appl. Phys. 46 L930 (2007) 1. Use of a top-quality 57 FeBO 3 single crystal for intense super-monochromatized beams 2. Realization of energetically-modulated monochromatized beams at a fixed angle and position Detector Monochromator Nuclear Bragg monochromator 57 FeBO 3 Thin film sample Pulsed X-rays Oscillation High-resolution monochromator  E  neV (Super-monochromatization + Doppler shift) H

Measurements of 57 Fe monolayer using a radioactive source MgO(001)/Cr(1.0 nm)/ 56 Fe(10.0 nm)/ 57 Fe(0.2 nm)/Cr(1.0 nm) Cr 57 Fe MgO(001) 56 Fe CEMS w/ a radioactive source (46 mCi (1.7 GBq), 7 days, RT) Effect = 0.36%

Measurements of 57 Fe monolayer using nuclear Bragg monochnomator MgO(001)/Cr(1.0 nm)/ 56 Fe(10.0 nm)/ 57 Fe(0.2 nm)/Cr(1.0 nm) Cr 57 Fe MgO(001) 56 Fe CEMS w/ a radioactive source (46 mCi (1.7 GBq), 7 days, RT) Effect = 0.36% Synchrotron w/ nuclear Bragg monochnomator (Incident angle ~ 1.6 o, Measurement ~ 3 hrs) Velocity (mm/s) Counts Detector Monochromator Nuclear Bragg monochromator 57 FeBO 3 Thin film sample Pulsed X-rays Oscillation High-resolution monochromator  E  neV (Super-monochromatization + Doppler shift) H

Setups of synchrotron-based Mössbauer spectroscopy Monochromator Thin film sample Detector Pulsed X-rays High-resolution monochromator  E  meV Time spectra Energy spectra High efficiency Wide element-applicability Difficult distribution analysis For the investigations on thin films High efficiency Limited element-applicability ( 57 Fe only) Easy distribution analysis Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator Energy spectra ( Energy dip in neV order + Doppler shift ) Medium efficiency Wide element-applicability Easy distribution analysis Detector Monochromator Nuclear Bragg monochromator 57 FeBO 3 Thin film sample Pulsed X-rays Oscillation High-resolution monochromator  E  neV (Super-monochromatization + Doppler shift) H

New method for SR Mössbauer spectroscopy in energy domain TransmitterScatterer Detector Counts Relative velocity M. Seto, et al., Phys. Rev. Lett. 102, (2009) * The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa

TransmitterScatterer Detector Counts Relative velocity New method for SR Mössbauer spectroscopy in energy domain M. Seto, et al., Phys. Rev. Lett. 102, (2009) * The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa

New method for SR Mössbauer spectroscopy in energy domain TransmitterScatterer Detector Counts Relative velocity * The transmitter can be a sample and the scatterer can be a standard absorber, or vice versa M. Seto, et al., Phys. Rev. Lett. 102, (2009)

Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator New method for SR Mössbauer spectroscopy in energy domain Setups for thin films

Cr Co MnSn & Co x 12 or x 24 SR Mössbauer spectrum of a ultra-thin Co 2 MnSn film in energy domain Time spectra Energy spectrum 300 K ) 35 hrs. 119 Sn total 1.2 nm (~ 6 atomic layer) or 2.4 nm (~ 12 atomic layer) ~ 3 hrs. Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator

Cr Co MnSn & Co x 12 or x 24 SR Mössbauer spectrum of a ultra-thin Co 2 MnSn film in energy domain Time spectra Energy spectrum 20 K ) 34 hrs. 119 Sn total 1.2 nm (~ 6 atomic layer) or 2.4 nm (~ 12 atomic layer) ~ 3 hrs. Monochromator Standard absorber (eg. CaSnO 3 ) Thin film sample Detector Pulsed X-rays Oscillation Resonant X-rays High-resolution monochromator Still necessary to be improved for thin films

From the development and demonstration phase to the application phase for material researches Conclusion Synchrotron-radiation-based Mössbauer spectroscopy in energy domain for the studies on thin films and nano-structures

Thank you