An Efficient and Versatile Query Engine for TopX Search Martin Theobald Ralf Schenkel Gerhard Weikum Max-Planck Institute for Informatics SaarbrückenGermany.

Slides:



Advertisements
Similar presentations
Even More TopX: Relevance Feedback Ralf Schenkel Joint work with Osama Samodi, Martin Theobald.
Advertisements

Information Retrieval in Practice
Chapter 5: Introduction to Information Retrieval
Twig 2 Stack: Bottom-up Processing of Generalized-Tree-Pattern Queries over XML Documents Songting Chen, Hua-Gang Li *, Junichi Tatemura Wang-Pin Hsiung,
Martin Theobald Max Planck Institute for Computer Science Stanford University Joint work with Ralf Schenkel, Gerhard Weikum TopX Efficient & Versatile.
Best-Effort Top-k Query Processing Under Budgetary Constraints
Pete Bohman Adam Kunk.  Introduction  Related Work  System Overview  Indexing Scheme  Ranking  Evaluation  Conclusion.
Gerhard Weikum Joint work with Martin Theobald and Ralf Schenkel Efficient Top-k Queries for XML Information Retrieval.
XML Ranking Querying, Dagstuhl, 9-13 Mar, An Adaptive XML Retrieval System Yosi Mass, Michal Shmueli-Scheuer IBM Haifa Research Lab.
Top-k Query Evaluation with Probabilistic Guarantees By Martin Theobald, Gerald Weikum, Ralf Schenkel.
Max-Planck-Institut University of Patras NetCInS Lab Informatik KLEE: A Framework for Distributed Top-k Query Algorithms KLEE: A Framework for Distributed.
TopX 2.0 — A (Very) Fast Object-Store for Top-k XPath Query Processing Martin Theobald Max-Planck Institute Ralf Schenkel Max-Planck Institute Mohammed.
Tunable Compression of Word-level Index for Versioned Corpora Klaus Berberich, Srikanta Bedathur, Gerhard Weikum Max-Planck Institute for Informatics Saarbruecken,
Information Retrieval in Practice
Paper by: A. Balmin, T. Eliaz, J. Hornibrook, L. Lim, G. M. Lohman, D. Simmen, M. Wang, C. Zhang Slides and Presentation By: Justin Weaver.
IR Challenges and Language Modeling. IR Achievements Search engines  Meta-search  Cross-lingual search  Factoid question answering  Filtering Statistical.
1 Configurable Indexing and Ranking for XML Information Retrieval Shaorong Liu, Qinghua Zou and Wesley W. Chu UCLA Computer Science Department {sliu, zou,
CAREER: Towards Unifying Database Systems and Information Retrieval Systems NSF IDM Workshop 10 Oct 2004 Jayavel Shanmugasundaram Cornell University.
INEX 2003, Germany Searching in an XML Corpus Using Content and Structure INEX 2003, Germany Yiftah Ben-Aharon, Sara Cohen, Yael Grumbach, Yaron Kanza,
Top- K Query Evaluation with Probabilistic Guarantees Martin Theobald, Gerhard Weikum, Ralf Schenkel Presenter: Avinandan Sengupta.
TopX 2.0 — A (Very) Fast Object-Store for Top-k XPath Query Processing Martin Theobald Stanford University Ralf Schenkel Max-Planck Institute Mohammed.
1 - Fuhr: Information Retrieval Methods for XML Documents XIRQL: Eine Anfragesprache für Information Retrieval in XML- Dokumenten Norbert Fuhr Universität.
Chapter 5: Information Retrieval and Web Search
Overview of Search Engines
Minimal Probing: Supporting Expensive Predicates for Top-k Queries Kevin C. Chang Seung-won Hwang Univ. of Illinois at Urbana-Champaign.
Efficient Keyword Search over Virtual XML Views Feng Shao and Lin Guo and Chavdar Botev and Anand Bhaskar and Muthiah Chettiar and Fan Yang Cornell University.
VLDB ´04 Top-k Query Evaluation with Probabilistic Guarantees Martin Theobald Gerhard Weikum Ralf Schenkel Max-Planck Institute for Computer Science SaarbrückenGermany.
MPI Informatik 1/17 Oberseminar AG5 Result merging in a Peer-to-Peer Web Search Engine Supervisors: Speaker : Sergey Chernov Prof. Gerhard Weikum Christian.
The CompleteSearch Engine: Interactive, Efficient, and Towards IR&DB integration Holger Bast Max-Planck-Institut für Informatik Saarbrücken, Germany joint.
CSE 6331 © Leonidas Fegaras Information Retrieval 1 Information Retrieval and Web Search Engines Leonidas Fegaras.
Querying Structured Text in an XML Database By Xuemei Luo.
TopX 2.0 at the INEX 2009 Ad-hoc and Efficiency tracks Martin Theobald Max Planck Institute Informatics Ralf Schenkel Saarland University Ablimit Aji Emory.
Towards Robust Indexing for Ranked Queries Dong Xin, Chen Chen, Jiawei Han Department of Computer Science University of Illinois at Urbana-Champaign VLDB.
Ranking in DB Laks V.S. Lakshmanan Depf. of CS UBC.
Search A Basic Overview Debapriyo Majumdar Data Mining – Fall 2014 Indian Statistical Institute Kolkata October 20, 2014.
Materialized View Selection for XQuery Workloads Asterios Katsifodimos 1, Ioana Manolescu 1 & Vasilis Vassalos 2 1 Inria Saclay & Université Paris-Sud,
1/28 Efficient Top-k Queries for XML Information Retrieval Gerhard Weikum Joint work with Ralf Schenkel.
Chapter 6: Information Retrieval and Web Search
Ranked Information Retrieval on XML Data Seminar “Informationsorganisation und -suche mit XML” Dr. Ralf Schenkel SS 2003 Saarland University 8. Juli 2003.
BNCOD07Indexing & Searching XML Documents based on Content and Structure Synopses1 Indexing and Searching XML Documents based on Content and Structure.
IO-Top-k: Index-access Optimized Top-k Query Processing Debapriyo Majumdar Max-Planck-Institut für Informatik Saarbrücken, Germany Joint work with Holger.
Answering Top-k Queries Using Views Gautam Das (Univ. of Texas), Dimitrios Gunopulos (Univ. of California Riverside), Nick Koudas (Univ. of Toronto), Dimitris.
INEX ‘05 INEX ‘05 Martin Theobald Ralf Schenkel Gerhard Weikum Max Planck Institute for Informatics Saarbrücken.
NRA Top k query processing using Non Random Access Only sequential access Only sequential accessAlgorithm 1) 1) scan index lists in parallel; 2) 2) consider.
Ranking of Database Query Results Nitesh Maan, Arujn Saraswat, Nishant Kapoor.
Automatic Labeling of Multinomial Topic Models
Holistic Twig Joins Optimal XML Pattern Matching Nicolas Bruno Columbia University Nick Koudas Divesh Srivastava AT&T Labs-Research SIGMOD 2002.
1 Holistic Twig Joins: Optimal XML Pattern Matching Nicolas Bruno, Nick Koudas, Divesh Srivastava ACM SIGMOD 2002 Presented by Jun-Ki Min.
Welcome to CPSC 534B: Information Integration Laks V.S. Lakshmanan Rm. 315.
1 VLDB, Background What is important for the user.
XRANK: RANKED KEYWORD SEARCH OVER XML DOCUMENTS Lin Guo Feng Shao Chavdar Botev Jayavel Shanmugasundaram Abhishek Chennaka, Alekhya Gade Advanced Database.
Text Search over XML Documents Jayavel Shanmugasundaram Cornell University.
Efficient and Self-tuning Incremental Query Expansions for Top-k Query Processing Martin Theobald Ralf Schenkel Gerhard Weikum Max-Planck Institute for.
Efficient Top-k Querying over Social-Tagging Networks Ralf Schenkel, Tom Crecelius, Mouna Kacimi, Sebastian Michel, Thomas Neumann, Josiane Xavier Parreira,
Structured-Value Ranking in Update- Intensive Relational Databases Jayavel Shanmugasundaram Cornell University (Joint work with: Lin Guo, Kevin Beyer,
Neighborhood - based Tag Prediction
Indexing & querying text
Max-Planck Institute for Informatics
Efficient Filtering of XML Documents with XPath Expressions
RE-Tree: An Efficient Index Structure for Regular Expressions
Implementation Issues & IR Systems
Martin Rajman, Martin Vesely
Spatio-temporal Pattern Queries
Max Planck Institute for Informatics
Martin Theobald Max-Planck-Institut Informatik Stanford University
Laks V.S. Lakshmanan Depf. of CS UBC
Structure and Content Scoring for XML
Structure and Content Scoring for XML
Relax and Adapt: Computing Top-k Matches to XPath Queries
Introduction to XML IR XML Group.
Presentation transcript:

An Efficient and Versatile Query Engine for TopX Search Martin Theobald Ralf Schenkel Gerhard Weikum Max-Planck Institute for Informatics SaarbrückenGermany VLDB ‘05

An Efficient and Versatile Query Engine for TopX Search 2 //article [ //sec [ about(.//, “XML retrieval”) ] //par [ about(.//, “native XML database”) ] ] //bib[about(.//item, “W3C”)] sec article sec par bib par title “Current Approaches to XML Data Manage- ment.” item “Data management systems control data acquisition, storage, and retrieval. Systems evolved from flat files … ” “XML queries with an expres- sive power similar to that of Datalog …” par title “XML-QL: A Query Language for XML.” “Native XML database systems can store schemaless data... ” inproc “Proc. Query Languages Workshop, W3C,1998.” title “Native XML databases.” An XML-IR Scenario… sec article sec par “Sophisticated technologies developed by smart people.” par title “The X ML Files” par title “The Ontology Game” title “The Dirty Little Secret” “What does XML add for retrieval? It adds formal ways …” bib “ w3c.org/xml” “There, I've said it - the "O" word. If anyone is thinking along ontology lines, I would like to break some old news …” title item url “XML”

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 3 TopX: Efficient XML-IR Extend top-k query processing algorithms for sorted lists [Buckley ’85; Güntzer, Balke & Kießling ’00; Fagin ‘01] to XML data Non-schematic, heterogeneous data sources Combined inverted index for content & structure Avoid full index scans, postpone expensive random accesses to large disk-resident data structures Exploit cheap disk space for redundant indexing Goal: Efficiently retrieve the best results of a similarity query

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 4 XML-IR: History and Related Work IR on structured data (SGML): IR on XML: Commercial software: MarkLogic, Verity?, IBM?, Oracle?,... XML query languages: XQuery (W3C) XPath 2.0 (W3C) NEXI (INEX Benchmark) XPath & XQuery Full-Text (W3C) XPath 1.0 (W3C) XML-QL (AT&T Labs) Web query languages: Lorel (Stanford U) Araneus (U Roma) W3QS (Technion Haifa) TeXQuery (AT&T Labs) WebSQL (U Toronto) XIRQL (U Dortmund / Essen) XXL & TopX (U Saarland / MPII) ApproXQL (U Berlin / U Munich) ELIXIR (U Dublin) JuruXML (IBM Haifa ) XSearch (Hebrew U) Timber (U Michigan) XRank & Quark (Cornell U) FleXPath (AT&T Labs) XKeyword (UCSD) OED etc. (U Waterloo) HySpirit (U Dortmund) HyperStorM (GMD Darmstadt) WHIRL (CMU)

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 5 Outline Data & Scoring model Database schema & indexing Top-k query processing for XML Scheduling & probabilistic candidate pruning Experiments & Conclusions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 6 Computational Model Precomputed content scores score(t i,e) ∈  E.g., term/element frequencies, probabilistic models (Okapi BM25), etc. Typically normalized to score(t i,e) ∈ [0,1] Monotonous score aggregation aggr: (D 1 ×…×D m )  (D 1 ×…×D m ) →  + E.g., sum, max, product (using log), cosine (using L 2 norm) Structural query conditions Complex query DAGs Aggregate constant score c for each matched structural condition (edges) Similarity queries (aka. “andish”) Non-conjunctive query evaluations Weak content matches can be compensated Vague structural matches Access model Disk-resident inverted index  Inexpensive sequential accesses (SA) to inverted lists: “getNextItem()”  More expensive random accesses (RA): “getItemBy(Id)”

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 7 Data Model Simplified XML model disregarding IDRef & XLink/XPointer Redundant full-contents Per-element term frequencies ftf(t i,e) for full contents Pre/postorder labels for each tag-term pair XML-IR IR techniques for XML Clustering on XML Evaluation “xml ir” article title abs sec “xml ir ir technique xml clustering xml evaluation“ “ir technique xml“ “clustering xml evaluation“ “clustering xml” “evaluation“ title par ftf(“xml”, article 1 ) = 3 ftf(“xml”, article 1 ) = 3

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 8 Full-Content Scoring Model Full-content scores cast into an Okapi-BM25 probabilistic model with element-specific model parameterization Basic scoring idea within IR-style family of TF*IDF ranking functions tagNavglengthk1k1 b article16,8502, sec96, par1,024, fig109, element statistics Additional static score mass c for relaxable structural conditions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 9 Outline Data & Scoring model Database schema & indexing Top-k query processing for XML Scheduling & probabilistic candidate pruning Experiments & Conclusions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 10 Inverted Block-Index for Content & Structure eiddocidscoreprepostmax- score sec[clustering] title[xml]par[evaluation] sec[clustering] title[xml] par[evaluation] Inverted index over tag-term pairs (full-contents) Benefits from increased selectivity of combined tag-term pairs Accelerates child-or-descendant axis, e.g., sec//”clustering” eiddocidscoreprepostmax- score eiddocidscoreprepostmax- score Sequential block-scans Re-order elements in descending order of (maxscore, docid, score) per list Fetch all tag-term pairs per doc in one sequential block-access docid limits range of in-memory structural joins Stored as inverted files or database tables (B + -tree indexes)

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 11 Navigational Index eiddocidprepost sec title[xml]par[evaluation] sec title par Additional navigational index Non-redundant element directory Supports element paths and branching path queries Random accesses using (docid, tag) as key Schema-oblivious indexing & querying eiddocidprepost eiddocidprepost

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 12 Outline Data & Scoring model Database schema & indexing Top-k query processing for XML Scheduling & probabilistic candidate pruning Experiments & Conclusions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 13 TopX Query Processing Adapt T hreshold A lgorithm (TA) paradigm Focus on inexpensive sequential/sorted accesses Postpone expensive random accesses Candidate d = connected sub-pattern with element ids and scores Incrementally evaluate path constraints using pre/postorder labels In-memory structural joins (nested loops, staircase, or holistic twig joins) Upper/lower score guarantees per candidate Remember set of evaluated dimensions E(d) worstscore(d) = ∑ i  E(d) score(t i,e) bestscore(d) = worstscore(d) + ∑ i  E(d) high i Early threshold termination Candidate queuing Stop, if Extensions Batching of sorted accesses & efficient queue management Cost model for random access scheduling Probabilistic candidate pruning for approximate top-k results [Theobald, Schenkel & Weikum, VLDB ’04] [Fagin et al., PODS ’01 Güntzer et al., VLDB ’00 Buckley&Lewit, SigIR ‘85] [Fagin et al., PODS ’01 Güntzer et al., VLDB ’00 Buckley&Lewit, SigIR ‘85]

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search worst=0.9 best= worst=0.5 best=2.5 9 TopX Query Processing By Example eiddocidscoreprepost eiddocidscoreprepost eiddocidscoreprepost worst=1.0 best=2.8 3 worst=0.9 best= worst=0.85 best= worst=0.8 best=2.65 worst=0.9 best= worst=0.5 best=2.4 9 doc 2 doc 17 doc 1 worst=0.9 best= doc 5 worst=1.0 best= doc 3 worst=0.9 best= worst=0.5 best=2.3 9 worst=0.85 best= score=1.7 best= score=0.5 best=1.3 9 worst=0.9 best= worst=1.0 best= worst=0.85 best= worst=0.8 best= worst=0.8 best= worst=0.1 best= worst=0.9 best= worst=1.0 best=1.9 3 worst=2.2 best= worst=0.5 best=0.5 9 worst=1.0 best=1.6 3 worst=0.85 best= worst=1.6 best= worst=0.9 best= worst=0.0 best=2.9 Pseudo- Element worst=0.0 best=2.8 worst=0.0 best=2.75 worst=0.0 best=2.65 worst=0.0 best=2.45 worst=0.0 best=1.7 worst=0.0 best=1.4 worst=0.0 best=1.35 sec[clustering] title[xml] Top-2 results worst= worst=0.5 9 worst= worst= worst= worst=1.0 3 worst= par[evaluation] min-2=0.0 min-2=0.5 min-2=0.9 min-2=1.6 sec[clustering] title[xml]par[evaluation] Candidate queue

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 15 Incremental Path Validations Complex query DAGs Transitive closure of descendant constraints Aggregate additional static score mass c for a structural condition i, if all edges rooted at i are satisfiable Incrementally test structural constraints Quickly decrease best scores for early pruning Schedule random accesses in ascending order of structural selectivities //article[//sec//par//“xml java”] //bib//item//title//“security” article sec par= “xml” par= “java” bib title= “security” item child-or-descendant article sec par= “xml” par= “xml” par= “java” par= “java” bib title= “security” title= “security” item article bib item title= security title= security sec par= xml par= xml par= java par= java Query: “Promising candidate” [0.0, high i ] c =[1.0] [1.0] bib item worst(d)= 1.5 best(d) = 6.5 worst(d)= 1.5 best(d) = 5.5 worst(d)= 1.5 best(d) = RA min-k=4.8 RA

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 16 Outline Data & Scoring model Database schema & indexing Top-k query processing for XML Scheduling & probabilistic candidate pruning Experiments & Conclusions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 17 MinProbe-Scheduling Structural conditions as “soft filters” (Expensive Predicates & Minimal Probes [Chang & Hwang, SIGMOD ‘02] ) Schedule random accesses only for the most promising candidates Schedule batch of RAs on d, if worstscore(d) + o d c > min-k Random Access Scheduling - Minimal Probes evaluated content & structure- related score unevaluated structural score mass (constant!) article sec par= “xml” par= “xml” par= “java” par= “java” bib title= “security” title= “security” item c =[1.0] [1.0]

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 18 BenProbe-Scheduling Analytic cost model Basic idea Compare expected random access costs to an optimal schedule Access costs on d are wasted, if d does not make it into the final top-k (considering both content & structure) Compare different Expected Wasted Costs (EWC) EWC-RA s (d) of looking up d in the structure EWC-RA c (d) of looking up d in the content EWC-SA(d) of not seeing d in the next batch of b sorted accesses Schedule batch of RAs on d, if EWC-RA s|c (d) [RA] < EWC-SA [SA] Cost-based Scheduling EWC-SA =

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 19 Split the query into a set of characteristic patterns, e.g., twigs, descendants & tag-term pairs Consider structural selectivities P[d satisfies all structural conditions Y] = P[d satisfies a subset Y’ of structural conditions Y] = Consider binary correlations between structural patterns and/or tag-term pairs (estimated from data sampling, query logs, etc.) Structural Selectivity Estimator //sec[//figure=“java”] [//par=“xml”] [//bib=“vldb”] //sec[//figure]//par //sec[//figure]//bib //sec[//par]//bib //sec//figure //sec//par //sec//bib //bib=“vldb” //par=“xml” //figure=“java” p 1 = p 2 = p 3 = p 4 = p 5 = p 6 = p 7 = p 8 = p 9 = figure= “java” figure= “java” sec par= “xml” par= “xml” bib= “vldb” bib= “vldb” bib= “vldb” bib= “vldb” sec EWC- RA s (d)

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 20 Full-content Score Predictor For each inverted list L i (i.e., all tag-term pairs) Approximate local score distribution S i by an equi-width histogram Periodically test all d in the candidate queue Consider aggregated score predictor eiddocidscoreprepostmax- score eiddocidscoreprepostmax- score title[xml] par[evaluation] Convolution (S 1,S 2 ) 2 0 δ(d) 0 S1S1 1 high 1 S2S2 high EWC- RA c (d) Probabilistic candidate pruning: Drop d from the candidate queue, if P[d gets in the final top-k] < ε Probabilistic candidate pruning: Drop d from the candidate queue, if P[d gets in the final top-k] < ε P[d gets in the final top-k] =

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 21 Outline Data & Scoring model Database schema & indexing Top-k query processing for XML Scheduling & probabilistic candidate pruning Experiments & Conclusions

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 22 Data Collections & Competitors INEX ‘04 benchmark setting 12,223 docs; 12M elemt’s; 119M index entries; 534MB 46 queries with official relevance judgments e.g., //article[.//bib=“QBIC” and.//par=“image retrieval”] IMDB (Internet Movie Database) 386,529 docs; 34M elemt’s; 130M index entries; 1,117 MB 20 queries, e.g., //movie[.//casting[.//actor=“John Wayne”] and.//role=“Sheriff”]//[.//year=“1959” and.//genre=“Western”] Competitors DBMS-style Join&Sort Using index full scans on the TopX schema StructIndex [Kaushik et al, Sigmod ’04] Top-k with separate inverted indexes for content & structure DataGuide-like structural index Full evaluations  no uncertainty about final document scores No candidate queuing, eager random accesses StructIndex+ Extent chaining technique for DataGuide-based extent identifiers (skip scans)

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 23 INEX Results , , TopX – BenProbe ,25, ,970n/a10StructIndex ,122,318n/a10Join&Sort ,074,384 77,482n/a10StructIndex , , TopX – MinProbe ,902, , ,000TopX – BenProbe relPrec # SA CPU sec epsilon # RA k relPrec

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 24 IMDB Results n/a , ,697n/a10StructIndex , n/a10Join&Sort ,647 22,445n/a10StructIndex , , TopX – MinProbe , , TopX – BenProbe # SA CPU sec epsilon # RA k relPrec

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 25 INEX with Probabilistic Pruning , , , , TopX - MinProbe , , , , ,327 36, # SA CPU sec epsilon # RA k relPrec

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 26 Conclusions & Ongoing Work Efficient and versatile TopX query processor Extensible framework for text, semi-structured & structured data Probabilistic cost model for random access scheduling Very good precision/runtime ratio for probabilistic candidate pruning Scalability Optimized for runtime, exploits cheap disk space (factor 4-5 for INEX) Experiments on TREC Terabyte text collection (see paper) Support for typical IR extensions Phrase matching, mandatory terms “+”, negation “-” Query weights (e.g., relevance feedback, ontological similarities) Dynamic and self-tuning query expansions [SigIR ’05] Incrementally merges inverted lists on demand Dynamically opens scans on additional expansion terms Vague Content & Structure (VCAS) queries

VLDB ‘05 An Efficient and Versatile Query Engine for TopX Search 27 Thank you! Demo available! Demo available!