MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%

Slides:



Advertisements
Similar presentations
Nucleon Decay Search with LENA DOANOW 07 Honolulu, Hawaii M. Wurm Technische Universität München, Germany
Advertisements

The SNO+ Experiment: Overview and Status
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
Double Beta Decay Neodymium, a rare earth element, will be added to the liquid scintillator in SNO+ (at 0.1% by weight). This will enable a search for.
New Large* Neutrino Detectors
Low Energy Neutrino Astrophysics
LAGUNA and Neutrino Physics NOW 2008 Lothar Oberauer TU München, Germany.
Pyhäsalmi (site review) W. H. Trzaska on behalf of the Finnish LAGUNA team.
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
An accelerator beam of muon neutrinos is manufactured at the Fermi Laboratory in Illinois, USA. The neutrino beam spectrum is sampled by two detectors:
Searching for Atmospheric Neutrino Oscillations at MINOS Andy Blake Cambridge University April 2004.
KamLand By Roy Lehn Omaha Roncalli. Means Kamioka Liquid scintillator Anti- Neutrino Detector.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
Liquid Scintillation Detectors for High Energy Neutrinos John G. Learned Department of Physics and Astronomy, University of Hawaii See: arXiv:
The MINOS Experiment Andy Blake Cambridge University.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
Present and future activities of the Garching group (E15)
The neutrons detection involves the use of gadolinium which has the largest thermal neutron capture cross section ever observed. The neutron capture on.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Neutron background and possibility for shallow experiments Tadao Mitsui Research Center for Neutrino Science, Tohoku University December, 2005 Neutrino.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Low-energy neutrino physics with KamLAND Tadao Mitsui (Research Center for Neutrino Science, Tohoku U.) for the KamLAND collaboration Now2010, Grand Hotel.
1 The Daya Bay Reactor Electron Anti-neutrino Oscillation Experiment Jianglai Liu (for the Daya Bay Collaboration) California Institute of Technology APS.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
KamLAND and Geoneutrinos Sanshiro Enomoto KamLAND Collaboration RCNS, Tohoku University 1. Review of Previous Results 2. Recent Improvements (Preliminary)
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
PINGU – An IceCube extension for low-energy neutrinos Uli Katz on behalf of the PINGU Collaboration European Strategy for Neutrino Oscillation.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
Lino MiramontiJune 9-14, 2003, Nara Japan 1st Yamada Symposium Neutrinos and Dark Matter in Nuclear Physics.
L. MoscaEPIPHANY Conf 6-8 Jan EPIPHANY Conference at Cracow “Physics in Underground Laboratories and its connection with LHC” - 6 to 8 January 2010.
Status of the BOREXINO experiment Hardy Simgen Max-Planck-Institut für Kernphysik / Heidelberg for the BOREXINO collaboration.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
Methods and problems in low energy neutrino experiments (solar, reactors, geo-) I G. Ranucci ISAPP 2011 International School on Astroparticle physics THE.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
The Daya Bay Reactor Neutrino Experiment R. D. McKeown Caltech On Behalf of the Daya Bay Collaboration CIPANP 2009.
Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15.
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Davide Franco – NOW C measurement and the CNO and pep fluxes in Borexino Davide Franco NOW2004 Conca Specchiulla September 2004.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
Solar Neutrino Results from SNO
NUMI NUMI/MINOS Status J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting.
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
Detector R&D for European projects Liquid Scintillator: LENA ICFA Neutrino European Meeting Paris, January 8 – 10, 2014 Wladyslaw H. Trzaska.
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
23/11/05BENE meeting at CERN1 (22-25 November 2005) L. Mosca (CEA-Saclay) The MEMPHYS project MEgaton Mass PHYSics in a Large International Underground.
J. Musser for the MINOS Collatoration 2002 FNAL Users Meeting
SoLid: Recent Results and Future Prospects
Simulation for DayaBay Detectors
Physics with the ICARUS T1800 detector
Daya Bay Neutrino Experiment
Neutrino astrophysics
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Low Energy Neutrino Astrophysics
Presentation transcript:

MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1% of 12 C) Background Sources - external gammas/fast neutrons - intrinsic contamination of the liquid: radionuclides as 210 Po, 210 Bi, 85 Kr etc. - µ-induced cosmogenic radionuclides: 11 C, 10 C, 9 Li, 8 He, … Scientific Motivation - search for temporal variations in 7 Be flux due to density/temperature fluctuations inside the sun - probing the MSW effect in the vacuum transition region → new osc. physics - determine contribution of CNO cycle to solar energy production - search for e → e conversion LAGUNA L arge A pparatus for G rand U nification and N eutrino A strophysics coordinated R&D design study in European collaboration, Laboratory site study funded by EU based on an on-going pre- feasibility study by Rockplan Ltd. SUPERNOVA NEUTRINOS Neutrino Detection - SN of 8 solar masses, 10 kpc away: 20,000 events in 10 seconds - event signatures and spatial reconstr. allow to distinguish the flux and mean energy of e, e and x - golden channels: the inverse beta decay provides detailed information on e, proton recoils spectral information on x Scientific Motivation - information on core-collapse SN: average energies of neutrino flavours ratio of flavour luminosities overall normalisation of the flux - information on neutrino properties: matter effects in SN envelope → neutrino mass hierarchy Earth matter effect → strong bound on value of  13 Low Energy Neutrino Astronomy in the future large-volume Liquid-Scintillator Detector LENA Low Energy Neutrino Astronomy in the future large-volume Liquid-Scintillator Detector LENA Michael Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Lewke, T. Marrodán Undagoitia, L. Oberauer, W. Potzel, S. Todor, J. Winter E15 Chair for Astroparticle Physics, Technische Universität München, Physik Department, James-Franck-Str., D Garching b. München, Germany. e are produced by U/Th decay chains in the Earth‘s crust/mantle. Detection - channel: inverse beta decay, threshold of 1.8 MeV (no 40 K) - expected rate: 4x10 (2-3) /yr - main background: reactor e Scientific Motivation - determine the contribution of radio- active decays to Earth‘s heatflow - measure the relative contributions of U/Th decay chains - with a 2 nd detector like Hanohano : disentangle U/Th abundancies of oceanic and continental crust - test of the hypothesis of a geo- reactor in the Earth‘s core (>2TW) _ Channelthr (MeV)# e p → n e e 12 C → 12 N e e 12 C → 12 B e x 12 C → 12 C* x x p → p x x e - → e - x e 13 C → 13 N e x 13 C → 13 C x DETECTOR LAYOUT Cavern height: 115 m, diameter: 50 m shielding from cosmic rays: ~4,000 m.w.e. Muon Veto plastic scintillator panels (on top) Water Cherenkov Detector 3,000 phototubes 100 kt of water reduction of fast neutron background Steel Cylinder height: 100 m, diameter: 30 m 70 kt of organic liquid 13,500 phototubes Buffer thickness: 2 m non-scintillating organic liquid shielding from external radioactivity Nylon Vessel separating buffer liquid and liquid scintillator Target Volume height: 100 m, diameter: 26 m 50 kt of liquid scintillator - vertical design is favourable in terms of rock pressure and buoyancy forces Winter, dipl. thesis, Skadhauge, hep-ph/ ; Dighe et al., hep-ph/ Earth Matter Effect DIFFUSE SUPERNOVA NEUTRINOS e created in extra-galatic core-collapse SN, red-shifted by cosmic expansion Neutrino Detection - det.channel: inverse beta decay largest cross section, clear signature → expected rate: 6-13 events/year - background sources: atmospheric and reactor e → energy window: MeV cosmogenic  n-emitters, fast neutrons can be identified and removed Scientific Motivation - first measurement of the DSN - cross-check for optical measurements of cosmic SN rate at red-shifts z<2 - spectroscopy of SN neutrinos: determine the neutrino average energy → rule out extreme SN scenarios Wurm et al., astro-ph/ testing SN models DSN signal and backgrounds in LENA DETECTOR CONSTRUCTION Preferred Location: still active Pyhäsalmi Cu/Ni-mine in central Finland Depth: 1.4 km, laboratory will be attached to the deepest mining level LENA Time Schedule for Pyhäsalmi: 2012 – start of excavation 2016 – detector construction 2020 – filling of scintillator and water 2022 – start of data taking investigated sites SITE STUDY Candidate Sites - Boulby, UK - Canfránc, Spain - Fréjus, France - Pyhäsalmi, Finland - Sieroszowice, Poland - Slanic, Romania LAGUNA Collaboration scientists - more than 20 institutes - 11 European countries 30m 100m MEMPHYS Water Čerenkov Detector 500 kt target 3 shafts 3x 81k PMs LENA Liquid-Scintillator Detector, 50 kt of target, 15,000 PMs GLACIER, Liquid-Argon Detector 100 kt target, 20m drift length, LEM-foil readout 28,000 PMs for Čerenkov- and scintillation light NUCLEON DECAY SUSY favoured decay mode proton decay to Kaon & anti-neutrino p → K +    /     Event Detection - signature: fast coincidence of K/µ - energy of half a GeV, smeared by Fermi motion (very large for LENA) Background - atmospheric ‘s rejected by pulse shape analysis, efficiency: 65% - low rate of hadronic channels (0.06/yr) Expected Rates - at current SK limit: 4/yr - after 10 yrs: 0.6 bg events expected - if none is seen:  p > 4x10 34 yrs (90%C.L.) pulse shape analysis rise time cut Kaon muon Marrodán et al., hep-ph/ type E (MeV)ev/d 7 Be pep CNO<1.8? B ( e-scat.) < B ( 13 C) <15~1 Work is in progress … S. Enomoto, DOANOW07, Hochmuth et al., hep-ph/ arXiv: LIQUID SCINTILLATOR DEVELOPMENT Liquid Scintillator consist of a solvent and one or several wavelength shifters Tested Materials Solvents: PXE, LAB, PC, Dodecane Fluors: PPO, pTP, bisMSB, PMP Scintillator Parameters and their Influence on Detector Performance - density and chemical composition → volume, buoyancy, self-shielding number of target protons, electrons & C-atoms - light yield and quenching → energy resolution, background identification - absorption/emission spectra → light propagation in the scintillator - fluorescence decay times → time resolution, particle identification by pulse shape analysis - large-scale solvent transparency absorption, re-emission, scattering → light propagation, effective light yield and time resolution time profile 10 MeV event, 5 m off-axis energy dependence of spatial resolution, light yield: 180 pe/MeV Purpose of MC - determine energy/time/spatial resolution, capability of particle identification etc. of the detector - test influence of scintillator parameters to optimize the composition of solvent/solutes J. Winter, dipl. thesis A MULTI-PURPOSE OBSERVATORY Further Fields of Research - atmospheric neutrinos at low energies - refined measurements of solar osc. parameters using reactor neutrinos - indirect search for MeV dark matter: detection of annihilation neutrinos - far detector for a neutrino/beta beam Spectral signature of 20/60 MeV dark matter annihilation neutrinos Palomares-Ruiz, Pascoli, arXiv: atmospheric  rate in LENA, energy- & angular-dependent Petcov, Schwetz, hep-ph/ Measuring reactor ’s for solar oscillation parameters in Fréjus _ _ _ _ _ _ _ _ This work has been supported by funds of the Maier-Leibniz-Laboratorium (MLL), the Sonderforschungsbereich Transregio 27 ‘‘Neutrinos and Beyond“, and the Excellence Cluster ‘‘Origin and Structure of the Universe“. _