1 איכות נתונים “By 2005, Fortune 1000 enterprises will lose more money in operational inefficiency due to data quality issues than they will spend on data.

Slides:



Advertisements
Similar presentations
Leveraging an Integrated ERP and CRM System - Featuring Sage MAS 500 ERP and Sage SalesLogix CRM.
Advertisements

Module 3: Business Information Systems
8.1 © 2007 by Prentice Hall 8 Chapter Achieving Operational Excellence and Customer Intimacy: Enterprise Applications.
Internal Control Concepts Knowledge. Best Practices for IT Governance IT Governance Structure of Relationship Audit Role in IT Governance.
Enterprise Systems.
Supply Chain Management
Principles of Information Systems, Seventh Edition2 An organization’s TPS must support the routine, day-to- day activities that occur in the normal course.
Integration of Applications MIS3502: Application Integration and Evaluation Paul Weinberg Adapted from material by Arnold Kurtz, David.
©2003 Prentice Hall Business Publishing, Accounting Information Systems, 9/e, Romney/Steinbart 18-1 Accounting Information Systems 9 th Edition Marshall.
Why Managers Must Understand IT Managers play a key role –Frame opportunities and threats so others can understand them –Evaluate and prioritize problems.
McGraw-Hill/Irwin Copyright © 2008, The McGraw-Hill Companies, Inc. All rights reserved.
9 C H A P T E R Transaction Processing and Enterprise Resource Planning Systems.
Chapter Lead Black Slide © 2001 Business & Information Systems 2/e.
HOSPITALITY MANAGEMENT Ch. 16 HS. THE GENERAL MANAGER  General Manager – is a person responsible for the entire operation of one unit of a hospitality.
000000_1 Confidential and proprietary information of Ingram Micro Inc. — Do not distribute or duplicate without Ingram Micro's express written permission.
Accounting Information Systems, 1st Edition
Chapter 10 Business Process Management and Enterprise Systems The McGraw-Hill Companies, Inc All rights reserved. Irwin/McGraw-Hill.
TRANSACTION PROCESSING SYSTEM (TPS)
Introduction to Enterprise Systems
Getting Smarter with Information An Information Agenda Approach
Chapter 9 Achieving Operational Excellence and Customer Intimacy: Enterprise Applications.
® IBM Software Group © IBM Corporation IBM Information Server Understand - Information Analyzer.
© 2014 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part, except for use as permitted in a license.
Chapter 2 – Enterprise Systems
SUBTITLE TEXT. Optimal Solutions What is E- Business Suite Oracle E-Business Suite is the most comprehensive suite of integrated, global business applications.
Lead Black Slide Powered by DeSiaMore1. 2 Chapter 10 Business Operations.
Carl Holmes Christy Lee Vendor Information SAP is headquarters is in Walldorf, Germany. Largest computer software company in the world. 47,804 employees.
Business Planning BJÖRN SCHIMANSKI MANAGING DIRECTOR ASIAN TRAILS LAOS WORKSHOP IUCN-KUONI-ASIAN TRAILS VIENTIANE, JUNE 2012.
Information Assurance The Coordinated Approach To Improving Enterprise Data Quality.
Chapter 1: Accounting Information Systems and the Accountant
Chapter 2: Enterprise Systems Accounting Information Systems, 9e Gelinas ►Dull ► Wheeler © 2011 Cengage Learning. All Rights Reserved. May not be copied,
Information systems and management in business Chapter 4 Using Information Systems in Business Operations.
Chapter © 2009 Pearson Education, Inc. Publishing as Prentice Hall.
Service Transition & Planning Service Validation & Testing
University of Southern California Center for Systems and Software Engineering Model-Based Software Engineering Supannika Koolmanojwong Spring 2013.
1 California State University, Fullerton Chapter 10 Business Operations.
Created By: Rohit SahajpalJames AasmanDamon GuardMatt HudonEric BlackMartin Matthiesen.
Business Functions, Processes, and Data Requirements
12/10/15.  It is a Cross Life Cycle Activity (CLCA) that may be performed at any stage ◦ In fact, some part of it (e.g. risk analysis and management)
Concepts in Enterprise Resource Planning Fourth Edition
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc., All Rights Reserved. 6-1 Chapter 6 CHAPTER 6 INTERNAL CONTROL IN A FINANCIAL STATEMENT AUDIT.
AUDIT IN COMPUTERIZED ENVIRONMENT
Chapter 16 Control Evidence-Based Decision Making Copyright © 2016 Pearson Canada Inc.16-1.
Chapter7 TELECOMMUNICATIONS AND NETWORKS. Content e-Business Systems – Cross-Functional Enterprise Applications – Enterprise Application Integration –
Copyright 2010, The World Bank Group. All Rights Reserved. Recommended Tabulations and Dissemination Section B.
CSE300 EAIusing EJB & XML CSE Enterprise Application Integration Using EJB and XML by Prithwis Sett Mumtaz Lohawala Nayana Paranjape.
Oracle’s EPM System and Strategy
ICS Area Managers Training 2010 ITIL V3 Overview April 1, 2010.
Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall Copyright © 2014 Pearson Education, Inc. publishing as Prentice Hall 10-1 Managerial.
Chapter 11 Information Systems Within the Organization.
Anytime, Anywhere Access Benefits Functionality Work Order Administration Dispatch Work Order Work Order Details New Work Order Additional Functionality.
Serving IT up with ITIL By Thane Price. IT is the laboratory’s pit crew  Goal : Make technology transparent while accomplishing valuable internal customer.
IT Audit for non-IT auditors Cornell Dover Assistant Auditor General 31 March 2013.
EECS David C. Chan1 Computer Security Management Session 1 How IT Affects Risks and Assurance.
Enterprise Processes and Systems MIS 2000 Instructor: Bob Travica Updated 2016 Class 16.
SAP MDG (Master Data Governance) online training Online | classroom| Corporate Training | certifications | placements| support CONTACT US: MAGNIFIC TRAINING.
Information Systems By Kundang K Juman, Ir. MMSI
Discovering Computers 2010: Living in a Digital World Chapter 14
Data Architecture World Class Operations - Impact Workshop.
Carl Holmes Christy Lee
Developing Information Systems
Service Organization Control (SOC)
Book: Integrated business processes with ERP systems
ENTERPRISE BUSINESS SYSTEMS
Book: Integrated business processes with ERP systems
A Process View of the Supply Chain
Chapter 22, Part
Agenda Purpose for Project Goals & Objectives Project Process & Status Common Themes Outcomes & Deliverables Next steps.
Presentation transcript:

1 איכות נתונים “By 2005, Fortune 1000 enterprises will lose more money in operational inefficiency due to data quality issues than they will spend on data warehouse and CRM initiatives (0.9 probability).” (Gartner Inc. T. Friedman April 2004).

2 נושאים מבוא המיקוד בלקוח בעיות בניהול נתוני הלקוח בנית אסטרטגיה ארגונית

3 איכות הנתונים בעידן הידע  Businesses are completely dependent on their data.  It is a critical corporate asset and needs to be treated that way.  Customers, stakeholders and regulators hold businesses accountable for their data  The onus of accountability has fallen on IT.

4 אין ארוחות חינם : איכות צריך לתכנן To realize the full benefits of their investments in enterprise computing systems, organizations must have a detailed understanding of the quality of their data — how to clean it, and how to keep it clean.

5 בעית שלמות

6 Low Quality

7 High Quality

8 במאה ה21 הידע הוא המשאב האסטרטגי החשוב ביותר ליצירת יתרון תחרותי

9 מבול הנתונים בארגונים  כמות הנתונים בארגון ממוצע, גדלה בקצב של 30 אחוז לשנה  כמות הנתונים מכפילה את עצמה כל 3 שנים  הדאגות שהיו לנו לפני מספר שנים, מחווירות לעומת הדאגות כיום  הדאגות היום יראו טריוויליות, לעומת הדאגות בעוד מספר שנים

10 כיצד משפיעה איכות הנתונים על עסקים  כל החלטה אסטרטגית של הארגון תלויה בנתונים  סקר שערכה קבוצת Meta בקרב 3000 משתמשים של מחסני נתונים מצא כי איכות הנתונים היא האתגר הגדול ביותר בהצלחת פרויקטים של BI  במחקר שנערך לאחרונה אצל לקוחות DB2 גילה כי יותר מ 10 אחוז מהנתונים על לקוחות כפולים  נתונים שגויים גורמים לעסקים לאבד אחוז מהמכירות שלהם / עלות התפעול שלהם  מחלקות IT עלולות למצוא את עצמן משקיעות מזמנן בתיקון שגיאות שנגרמו עכב נתונים שגויים

11 המיקוד בלקוח מיקוד במוצר מיקוד בלקוח שירות ומכירות 24/7/365 שירות אישי 1/1 כל אינטראקציה עם הלקוח=הזדמנות עסקית

12 תקלות אופיניות בקשר עם לקוחות  מסע שיווק : פניה ללקוח ותיק עם הצעה שמתאימה  ללקוח חדש  פניה שיווקית לעובדי הארגון עצמו  שירות לקוי סירוב לתת שירות עקב שגיאה בנתוני  הסכם השירות  התראה על יתרה שלילית בחשבון אישי  לבעל חשבון ענק בחברה עסקית  כתובת שגויה המוצר לא מגיע ליעדו  תאריך לידה שגוי הצעות לבני 16 שמתאימות לבני 61  מצב אישי שגוי הצעה לז " ל

13 מהיכן מגיעים הנתונים  מערכות תפעוליות Legacy  הזנה עצמית דרך האינטרנט

14 בעיות בהזנת נתונים באינטרנט  כפילויות  שגיאות כתיב  שגיאות הקלדה  תוארים לא תקניים  כתובות  נתונים חלקיים  סנכרון עם מערכות תפעוליות

15 מאפיני נתונים בעיניים ניהוליות  The right data  With the right completeness  In the right context  With the right accuracy  In the right format  At the right time  At the right place  For the right purpose  The data I need  All the data I need  Whose meaning I know  I can trust and rely on it  I can use it easily  When I need it  Where I need it  I can accomplish our objectives and delight our customers

16 מאפיני Information Quality Business Value ערך עסקי Validity תקפות Accuracy דיוק Integrity שלמות Security בטיחות Privacy פרטיות Consistency עקביות Conformity תקניות Accountability אחריות availability זמינות Completness שלמות Presentation ייצוג Place מיקום Maintainability תחזוקתיות

17 Validity  Input errors can have dire implications as well.  Buy.com discovered this in 1999 when it inadvertently offered a $588 Hitachi monitor for $ –  Presumably the person entering the web site data made a mistake.  That “ input error ” ultimately cost Buy.com $575,000 when they settled the suit filed by the 7000 customers who demanded that Buy.com deliver on its advertised price.

18 Accountability  Proving accountability requires not only that all data be monitored.  It requires that complete records of access and use be kept. Those records create the audit trail.  It is the audit trail that shows who did what to what, when and how.  It is the audit trail that will snare the villain, detect anomalies prove compliance and provide assurance that data is used only in intended and appropriate ways.  Creating a comprehensive, perpetual audit hardens an organization against many kinds of loss that often go undetected until it ’ s too late.

19 Maintainability  Faulty software can cause data errors and loss as well.  For example, if a discounting algorithm has been coded incorrectly, and the discount gets applied twice under certain conditions, the error might go unnoticed for a long time –  how many customers complain that they paid too little?  Once discovered, it ’ s often impossible to undo the damage that ’ s been done.

20 Conformity  Sarbanes-Oxley ACT (SBA)  HIPAA  USA PATRIOT Act  California Senate Bill 1386  Gramm-Leach-Bliley.  Basel II  SEC  FRB  FDIC  OTS  NCUA

21 Security  Data Loss  Corruption  Destruction  Theft  Fraud

22 בנית אסטרטגיה ארגונית “ A cluster of decisions centered on organizational data quality goals that determine the data processes to improve, solutions to implement, and people to engage. ”

23 תכנון האיכות : מפת דרכים מטרות עסקיות אסטרטגיות מטרות איכות אסטרטגיות ניתוח 6 גורמי איכות החלטות ביצועיות לכל גורם פעולות נגזרות מכל גורם משאבים נגזרים מכל פעולה

24 דוגמא למטרה אסטרטגית ופירוקה למטרות איכות  מטרה אסטרטגית : שיפור המכירות ב 5 אחוז על ידי : Cross Selling Up Selling  מטרות איכות נגזרות : צמצום הזמן הנדרש להפקת דוח מכירות רבעוני ריכוז 13 מקורות מידע על מכירות לתוך קובץ מרכזי תאימות רגולציה בעניין זיהוי לקוחות איחוד קובץ ספקים חדש לתוך מערכת ה ERP

25 ששת גורמי האיכות  Context — the type of data being cleansed and the purposes for which it is used  Storage — where the data resides  Data flow — how the data enters and moves through the organization  Work flow — how work activities interact with and use the data  Stewardship — people responsible for managing the data  Continuous monitoring — processes for regularly validating the data

26 ששת גורמי האיכות

27 CONTEXT  Context defines the type of data and how the data is used. Ultimately, the context of the data determines the necessary types of cleansing algorithms and functions needed to raise the level of quality.

28 דוגמאות ל CONTEXT  Customer data — names, addresses, phone numbers, social security numbers, etc.  Financial data — dates, loan values, balances, titles, account numbers, types of  account (revocable or joint trusts, etc.)  Supply chain data — part numbers, descriptions, quantities, supplier codes, etc.  Telemetry data — height, speed, direction, time, measurement type, etc.

29 STORAGE  Every data quality strategy must consider where the data physically resides. Considering storage as a data quality factor ensures the physical storage medium is included in the overall strategy.  System architecture issues such as whether data is distributed or centralized, homogenous or heterogeneous are important. If the data resides in an enterprise application, the type (CRM, ERP, DW, etc.), vendor, and platform of the application will dictate connectivity options to the data.

30 DATA FLOW  Data does not stay in one place. Even with a central data warehouse, data moves in and out just like any other form of inventory.  The migration of data can present a moving target for a data quality strategy. Hitting that target is simplified by mapping the data flow. Once mapped, staging areas provide a “ freeze frame ” of the moving target.  A data flow will indicate where the data is manipulated, and if the usage of the data changes context.  Certainly the storage location will change, but knowing the locations in advance will make the strategy more effective as the best location can be chosen given the specific goals.  Work evaluating data flow will provide iterative refinement of the results compiled in both the storage and context factors.

31 WORK FLOW  Work flow is the sequence of physical tasks necessary to accomplish a given operation..

32 Stewardship  No strategy is complete without the evaluation of the human factor and its effect on operations.  Work flows and data flows are initiated by people. Data itself has no value except to fulfill purposes set forth by people.  The people who manage data processes are, in the current data warehouse vernacular, called data stewards.

33 Continuous Monitoring  The final factor in a data quality strategy is continuous monitoring.  Adhering to the principals of Total Quality Management (TQM), continuous monitoring is measuring, analyzing, and then improving a system in a continuous manner.  Continuous monitoring is crucial for the effective use of data, as data will immediately age after capture, and future capture processes can generate errors.

34 Questions ? P2080