Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki,

Slides:



Advertisements
Similar presentations
Baryons with Holography Hideo SUGANUMA ( Kyoto Univ. ) Toru KOJO ( Kyoto Univ. ) Kanabu NAWA ( RCNP ) in collaboration with.
Advertisements

Denis Parganlija (Frankfurt U.) Meson 2010 Workshop, Kraków - Poland Structure of Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450) Denis Parganlija.
J. RuppertHot Quarks 2006, May 2006 What does the rho? Lessons from NA60's di-muon measurement. Jörg Ruppert Nuclear Theory, Department of Physics, Duke.
1 A Model Study on Meson Spectrum and Chiral Symmetry Transition Da
1 Chiral Symmetry Breaking and Restoration in QCD Da Huang Institute of Theoretical Physics, Chinese Academy of
Hadronic matter from the vector manifestation (VM) fixed point Mannque Rho Chiral 05/RIKEN.
QCD – from the vacuum to high temperature an analytical approach an analytical approach.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
Finite Size Effects on Dilepton Properties in Relativistic Heavy Ion Collisions Trent Strong, Texas A&M University Advisors: Dr. Ralf Rapp, Dr. Hendrik.
Exotic states at boundary of quark matter Mannque Rho Saclay (HIM, September 2006)
1 Jozsó Zimányi (1931 – 2006). 2 Jozsó Zimányi I met Prof. Zimányi in India in Member, NA49 and PHENIX Collaborations Nuclear Equation of State.
1 Debye screened QGP QCD : confined Chiral Condensate Quark Potential Deconfinement and Chiral Symmetry restoration expected within QCD mm symmetryChiral.
Relativistic chiral mean field model for nuclear physics (II) Hiroshi Toki Research Center for Nuclear Physics Osaka University.
Masayasu Harada (Nagoya Univ.) based on M.H., M.Rho and C.Sasaki, Phys. Rev. D 70, (2004) M.H., Work in progress at “Heavy Quark Physics in QCD”
1 Thermodynamics of two-flavor lattice QCD with an improved Wilson quark action at non-zero temperature and density Yu Maezawa (Univ. of Tokyo) In collaboration.
“Time-reversal-odd” distribution functions in chiral models with vector mesons Alessandro Drago University of Ferrara.
Understanding the QGP through Spectral Functions and Euclidean Correlators BNL April 2008 Angel Gómez Nicola Universidad Complutense Madrid IN MEDIUM LIGHT.
Charm hadrons in nuclear medium S. Yasui (KEK) K. Sudoh (Nishogakusha Univ.) “Hadron in nucleus” 31 Nov. – 2 Dec arXiv:1308:0098 [hep-ph]
In-medium hadrons and chiral symmetry G. Chanfray, IPN Lyon, IN2P3/CNRS, Université Lyon I The Physics of High Baryon Density IPHC Strasbourg, september.
Mass modification of heavy-light mesons in spin-isospin correlated matter Masayasu Harada (Nagoya Univ.) at Mini workshop on “Structure and production.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Strong and Electroweak Matter Helsinki, June. Angel Gómez Nicola Universidad Complutense Madrid.
Hadron to Quark Phase Transition in the Global Color Symmetry Model of QCD Yu-xin Liu Department of Physics, Peking University Collaborators: Guo H., Gao.
Chiral Symmetry Restoration and Deconfinement in QCD at Finite Temperature M. Loewe Pontificia Universidad Católica de Chile Montpellier, July 2012.
Su Houng Lee Theme: 1.Will U A (1) symmetry breaking effects remain at high T 2.Relation between Quark condensate and the ’ mass Ref: SHL, T. Hatsuda,
Chiral condensate in nuclear matter beyond linear density using chiral Ward identity S.Goda (Kyoto Univ.) D.Jido ( YITP ) 12th International Workshop on.
Recent progress on nuclear physics from Skyrme model Yong-Liang Ma Jilin University In Collaboration with: M. Harada, B. R. He H. K. Lee, Y. Oh, B. Y.
Effect of thermal fluctuation of baryons on vector mesons and low mass dileptons ρ ω Sanyasachi Ghosh (VECC, Kolkata, India)
5d truncation ignoring the 5-sphere (SO(6) gauge symmetry) There are 42 scalars - a 20 of SO(6) - a 10 and 10 of SO(6) - scalar dilaton-axion, singlets.
Eigo Shintani (KEK) (JLQCD Collaboration) KEKPH0712, Dec. 12, 2007.
Instanton-induced contributions to hadronic form factors. Pietro Faccioli Universita’ degli Studi di Trento, I.N.F.N., Gruppo Collegato di Trento, E.C.T.*
Chiral phase transition and chemical freeze out Chiral phase transition and chemical freeze out.
Denis Parganlija, A Linear Sigma Model with Vector Mesons and Global Chiral Invariance Denis Parganlija In collaboration with Francesco Giacosa,
II Russian-Spanish Congress “Particle and Nuclear Physics at all scales and Cosmology”, Saint Petersburg, Oct. 4, 2013 RECENT ADVANCES IN THE BOTTOM-UP.
Dian-Yong Chen Institute of Modern Physics, CAS FHNP’15 Beijing Hadronic Loop Contributions to Heavy Quarkonium Decay
Masayasu Harada (Nagoya Univ.) based on M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H., T.Fujimori and C.Sasaki, in KIAS-Hanyang Joint.
Masayasu Harada (Nagoya Univ.) based on (mainly) M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002)
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
* Collaborators: A. Pich, J. Portolés (Valencia, España), P. Roig (UNAM, México) Daniel Gómez Dumm * IFLP (CONICET) – Dpto. de Física, Fac. de Ciencias.
Denis Parganlija (Frankfurt U.) Excited QCD 2010, Tatranska Lomnica/Slovakia Nature of Light Scalar Mesons f 0 (600), a 0 (980), f 0 (1370) and a 0 (1450)
XXXI Bienal de la RSEF, Granada, España, septiembre Angel Gómez Nicola Universidad Complutense Madrid COEFICIENTES DE TRANSPORTE EN UN GAS.
A Hidden Local Symmetry Theory of Dileptons in Relativistic Heavy Ion Collisions Gerry Brown* 4/25/08 State University of New York *G. E. Brown, M. Harada,
Restoration of chiral symmetry and vector meson in the generalized hidden local symmetry Munehisa Ohtani (RIKEN) Osamu Morimatsu ( KEK ) Yoshimasa Hidaka(TITech)
Integrating out Holographic QCD Models to Hidden Local Symmetry Masayasu Harada (Nagoya University) Dense strange nuclei and compressed baryonic matter.
Topological Structure of Dense Hadronic Matter October, 2004 Seoul V. Vento Universitat de València Colaborators: Heejung Lee (Universitat de València),
Toru T. Takahashi with Teiji Kunihiro ・ Why N*(1535)? ・ Lattice QCD calculation ・ Result TexPoint fonts used in EMF. Read the TexPoint manual before you.
Beijing, QNP091 Matthias F.M. Lutz (GSI) and Madeleine Soyeur (Saclay) Irfu/SPhN CEA/ Saclay Irfu/SPhN CEA/ Saclay Dynamics of strong and radiative decays.
EFT for π ☆ Chiral Perturbation Theory matching to QCD ⇒ Λ ~ 1 GeV P-wave ππ scattering J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984); NPB.
Hadron 2007 Frascati, October 12 th, 2007 P.Faccioli, M.Cristoforetti, M.C.Traini Trento University & I.N.F.N. J. W. Negele M.I.T. P.Faccioli, M.Cristoforetti,
Study of sigma meson structure in D meson decay Masayasu Harada (Nagoya Univ.) at International Workshop on New Hadon Spectroscopy (November 21, 2012,
Dense Baryonic Matter in the Hidden Local Symmetry Approach Yong-Liang Ma Department of Physics, Nagoya University. Talk APCTP-WCU Focus Program,
Relating holographic QCD models to hidden local symmetry models Property of X(3872) as a hadronic molecule with negative parity Masayasu Harada “New Hadons”
Denis Parganlija (Frankfurt U.) Finite-Temperature QCD Workshop, IST Lisbon Non-Strange and Strange Scalar Quarkonia Denis Parganlija In collaboration.
Radiative Decays involving Scalar Mesons Masayasu Harada (Nagoya Univ.) based Japan-US Workshop on “Electromagnetic Meson Production and Chiral Dynamics”
M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) M.H. and K.Yamawaki, Phys. Rev. Lett. 87, (2001)
Chiral Approach to the Phi Radiative Decays and the Quark Structure of the Scalar Meson Masayasu Harada (Nagoya Univ.) based HEP-Nuclear Physics Cross.
C.A. Dominguez Centre for Theoretical Physics & Astrophysics University of Cape Town Department of Physics, Stellenbosch University South Africa XII WORKSHOP.
Study of sigma meson structure in chiral models Masayasu Harada (Nagoya Univ.) at Crossover 2012 (Nagoya University, July 12, 2012) Based on ・ M.H., H.Hoshino.
-Nucleon Interaction and Nucleon Mass in Dense Baryonic Matter
mesons as probes to explore the chiral symmetry in nuclear matter
4. Hidden Local Symmetry Effective (Field) Theory
Aspects of the QCD phase diagram
有限密度・ 温度におけるハドロンの性質の変化
The Operator Product Expansion Beyond Perturbation Theory in QCD
Infrared Slavery Above and Hadronic Freedom Below Tc
Present status of bottom up model: sample works
Hyun Kyu Lee Hanyang University
Dilaton in Baryonic Matter
Factorization in some exclusive B meson decays
Theory on Hadrons in nuclear medium
Presentation transcript:

Masayasu Harada (Nagoya Univ.) based on M.H. and C.Sasaki, Phys.Rev.D74:114006,2006 at Chiral 07 (Osaka, November 14, 2007) see also M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003) M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002) M.H., Y. Kim and M. Rho, Phys. Rev. D 66, (2002). M.H. and C.Sasaki, Nucl. Phys. A 736, 300 (2004)

Hadron phase Color-Superconducting phase T Quark-Gluon-Plasma phase ☆ QCD in hot and dense matter μBμB 1. Introduction

☆ Melting of quark – anti-quark condensate 〈 q q 〉 Is there a signal ?

☆ Vector Manifestation longitudinal  = Chiral partner of  near chiral restoration point M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001) Dropping  mass ・・・ signal of the chiral restoration based on the VM. ☆ Brown-Rho scaling dropping  mass ⇔ chiral symmetry restoration G.E.Brown and M.Rho, Phys. Rev. Lett (1991) Theoretical description of dropping  mass. M.H. and C.Sasaki, Phys. Lett. B 537, 280 (2002) M.H., Y. Kim and M. Rho, Phys. Rev. D 66, (2002).

☆ Dropping  mass (Brown-Rho scaling) can explain dropping  mass based on Brown-Rho scaling R.Rapp-J.Wambach, ANP 25,1 (2000) KEK-PS E325

☆ These analyses seem to assume the vector dominance (VD). G. E. Brown and M. Rho, arXiv:nucl-th/ ; arXiv:nucl-th/ ☆ Strong violation of the VD ・・・ Prediction of the VM gives a substancial suppression ! Effect from the violation of the VD to the rate ? ☆ Recent experiments exclude dropping ρ ? NA60 Nucl.Phys.A774: ,2006. CERES : Talk given by P. Braun-Munzinger at KIAS-APCTP Workshop "Relativistic Heavy-Ion Collison : Present and Future" Heavy Ion Meeting (HIM ). dropping ρ??

Outline 1. Introduction 2. Hidden Local Symmetry and the Vector Dominance 3. Thermal Dilepton Spectra in the Vector Manifestation 4. Summary

2. Hidden Local Symmetry and the Vector Dominance M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, PRL (1985) M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988) H.Georgi, PRL 63, 1917 (1989); NPB 331, 311 (1990): M.H. and K.Yamawaki, PLB297, 151 (1992); M.Tanabashi, PLB 316, 534 (1993): M.H. and K.Yamawaki, Physics Reports 381, 1 (2003) ◎ Systematic low-energy expansion including dynamical  ◎ Hidden Local Symmetry ・・・ EFT for  and  based on chiral symmetry of QCD  = gauge boson of the HLS massive through the Higgs mechanism loop expansion ⇔ derivative expansion

☆ Hidden Local Symmetry U = e = ξ ξ 2 i π/ F π L † R F, F ・・・ Decay constants of π and σ πσ h ∈ [ SU(N ) ] fV local g ∈ [ SU(N ) ] f L,R global ・ Particles ρ μ = ρ μ a T a ・・・ HLS gauge boson π=π a T a ・・・ NG boson of [ SU(N f ) L ×SU(N f ) R ] global symmetry breaking σ=σ a T a ・・・ NG boson of [ SU(N f ) V ] local symmetry breaking ◎ 3 parameters at the leading order F  ・・・ pion decay constant g ・・・ gauge coupling of the HLS a = (F  /F  ) 2 ⇔ validity of the vector dominance m = a g F π ρ 22 2

e+e+ e-e- ☆ Vector dominance (  dominance) at T = 0 a = 2 ⇒ vector dominance a /2 1 – a /2 long standing problem not clearly explained in QCD ! ◎ HLS analysis [M.H. and K.Yamawaki, Phys. Rept. 381, 1 (2003)] ・ a = 4/3 in the large Nc limit cf: AdS/QCD anlysis by Sakai-Sugimoto, PTP143,843 (2005) ・ a = 2 including 1/Nc corrections see also AdS/QCD analysis by M.H., M.Matsuzaki and K.Yamawaki, PRD74, (2006).  dominance is accidental only for Nc = 3 (and T = 0)

☆  dominance at T > 0 ? e+e+ e-e- ◎ a = 2 kept fixed in several analyses (No T-dependence on a) a /2 1 – a /2 ◎ Parameters of hadronic Lagrangians depend on T. ・・・ Intrinsic temperature dependence signature of internal structure of hadrons (Hadrons are constructed from quarks and gluons.) ・ VM predicts a (T) → 1 when m  (T) → 0 for T → Tc Strong violation of  dominance in the VM Strong suppression of  contribution to the dilepton spectrum 0 → 1 1 → 1/2

☆ Intrinsic temperature dependence of parameters ・・・ obtained by integrating out heavier hadrons ・ Effects of heavy hadrons are negligible ? ・・・ Not True near the critical temperature e.g., Hagedon temperature based on string model large Nc QCD each contribution from hadrons is suppressed by 1/Nc phase transition is driven by infinite number of hadrons ・ Infinite number of hadrons contribute near Tc Integrating out infinite number of hadrons near Tc → a large T dependence of the parameters for effective models for light hadrons (e.g., π and ρ in the HLS) in real-life QCD

・・・ Wigner realization of chiral symmetry longitudinalρ = chiral partner of π c.f. conventional linear-sigma model manifestation scalar meson = chiral partner of π M.H. and K.Yamawaki, Phys. Rev. Lett. 86, 757 (2001)

Quark Structure and Chiral representation coupling to currents and densities (S. Weinberg, 69’) longitudinal components

m ρ → 0 is necessary ・・・ support BR scaling Chiral Restoration linear sigma model vector manifestation

◎ Intrinsic T dependence ・・・ basic ingredient for the Vector Manifestation (VM) ◎ VM predicts ; dropping  ; strong violation of the vector dominance a ☆ T-dependences of physical parameters ・・・ intrinsic T dependence + hadronic temperature effects from thermal π and ρ intrinsic T dependence for T > Tf = 0.7 Tc Tf/TcTf/Tc ρ massm ρ → 0 Tf/TcTf/Tc ρ width Γ ρ → 0

◎ Vector dominance ? direct γππ coupling : 1 – a /2 Tf/TcTf/Tc VD is good strong violation of the VD ・ Strong violation of the VD occurs near T c due to the intrinsic effect.

M.H. and C.Sasaki, Phys.Rev.D74:114006,2006

☆ Effect of violation of the vector dominance VM (for T → Tc) a(T) → 1 when m  (T) → 0 VM with VD a(T) = 2 kept fixed when m  (T) → 0 T = 0.4 T c No much difference ! v.s.

◎ Near Tc VM VM with VD vacuum ρ T = 0.75 T c VM < vacuum ρ< VM with VD !! T = 0.8 T c vacuum ρ< VM < VM with VD T = 0.85 T c vacuum ρ ≪ VM ≪ VM with VD !! Signal of the VM Violation of VD is very important

◎ Hidden Local Symmetry Theory ・・・ EFT for  and  Systematic chiral perturbation including dynamical  ◎ Vector Manifestation in hot matter ・・・ m ρ → 0 for T → T c ⇒ m ρ → 0 ・・・ signal of the chiral symmetry restoration ! ・ strong violation of the VD ・・・ important for the dilepton rate ◎ Vector dominance in the HLS ・ a = 4/3 in the large Nc limit ・ a = 2 including 1/Nc corrections ◎ future direction ・ Effects of collisional broadening including A1, … ・・・ work in progress (M.H., C.Sasaki and W.Weise)