MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research.

Slides:



Advertisements
Similar presentations
Vulcan Front End OPCPA System
Advertisements

Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
In Search of the “Absolute” Optical Phase
Generation of Ultrafast Mid-IR pulses using a 100 MeV ERL-FEL (Drivers for tunable HHG based coherent X-Ray sources ?)
Soft X-ray light sources Light Sources Ulrike Frühling Bad Honnef 2014.
22. Ultrashort x-ray pulses: High-Harmonic Generation
Approaches for the generation of femtosecond x-ray pulses Zhirong Huang (SLAC)
High energy, high repetition rate pump laser system for OPCPAs A.-L. Calendron 1,2,3, L. E. Zapata 1,4, H. Çankaya 1,2, H. Lin 4 and F. X. Kärtner 1,2,3,4.
2004 CLEO/IQEC, San Francisco, May Optical properties of the output of a high-gain, self-amplified free- electron laser Yuelin Li Advanced Photon.
Dylan Yost, Arman Cingoz, Tom Allison and Jun Ye JILA, University of Colorado Boulder Collaboration with Axel Ruehl, Ingmar Hartl and Martin Fermann IMRA.
Sub femtosecond K-shell excitation using Carrier Envelop Phase Stabilized 2-Cycles IR (2.1  m) Radiation Source. Gilad Marcus The Department of Applied.
Hard X-ray FELs (Overview) Zhirong Huang March 6, 2012 FLS2012 Workshop, Jefferson Lab.
Generation of short pulses
2. High-order harmonic generation in gases Attosecond pulse generation 1. Introduction to nonlinear optics.
A. Zholents, July 28, 2004 Timing Controls Using Enhanced SASE Technique *) A. Zholents or *) towards absolute synchronization between “visible” pump and.
UCLA The X-ray Free-electron Laser: Exploring Matter at the angstrom- femtosecond Space and Time Scales C. Pellegrini UCLA/SLAC 2C. Pellegrini, August.
New Electron Beam Test Facility EBTF at Daresbury Laboratory B.L. Militsyn on behalf of the ASTeC team Accelerator Science and Technology Centre Science.
High Harmonic Generation in Gases Muhammed Sayrac Texas A&M University.
W.S. Graves, ASAC Review, Sept 18-19, 2003 Accelerator Overview Goals for proposal Description of technical components: injector, linac, compressors, etc.
Palaiseau - FRANCE Spatio-Temporal Chirped Pulse Amplification for Avoiding Spectral Modifications in Ultra-Short Petawatt Lasers C. Radier1,2, F. Giambruno1,3,
A 5 fs high average power OPCPA laser system for attosecond pulse production Philip Bates, Yunxin Tang, Emma Springate and Ian Ross Central Laser Facility,
WHY ???? Ultrashort laser pulses. (Very) High field physics Highest peak power, requires highest concentration of energy E L I Create … shorter pulses.
Ultrafast particle and photon sources driven by intense laser ‐ plasma interaction Jyhpyng Wang Institute of Atomic and Molecular Sciences, Academia Sinica.
CLEO2004 K. L. Ishikawa No. 0 Enhancement in photoemission from He + by simultaneous irradiation of laser and soft x-ray pulses Kenichi L. Ishikawa Department.
W.S. Graves1 Seeding for Fully Coherent Beams William S. Graves MIT-Bates Presented at MIT x-ray laser user program review July 1, 2003.
Low Emittance RF Gun Developments for PAL-XFEL
Efficient scaling of output pulse energy in static hollow fiber compressors X. Chen, A. Malvache, A. Ricci, A. Jullien, R. Lopez-Martens ICUIL 2010, Watkins.
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
R&D Towards X-ray Free Electron Laser Li Hua Yu Brookhaven National Laboratory 1/23/2004.
Lasers and RF-Timing Franz X. Kaertner
Imperial College London Imperial College XUV Attosecond Beamline: progress and results to date Charles Haworth Laser Consortium Imperial College London.
Free Electron Lasers (I)
S. Spampinati, J.Wu, T.Raubenhaimer Future light source March, 2012 Simulations for the HXRSS experiment with the 40 pC beam.
Nonlinear Optics in Plasmas. What is relativistic self-guiding? Ponderomotive self-channeling resulting from expulsion of electrons on axis Relativistic.
W.S. Graves DESY-Zeuthen 8/20031 Study for an xray laser at MIT Bates Laboratory William S. Graves MIT-Bates Presented at ICFA S2E workshop DESY-Zeuthen.
W.S. Graves ASAC Review Sept 18-19, 2003 R&D at Bates William S. Graves MIT-Bates Laboratory Presentation to MIT X-ray laser Accelerator Science Advisory.
Relativistic nonlinear optics in laser-plasma interaction Institute of Atomic and Molecular Sciences Academia Sinica, Taiwan National Central University,
HRS Program FLS2010 Workshop March 4 th, 2010 HHG based Seed Generation for X-FELs Franz X. Kärtner, William S. Graves and David E. Moncton and WIFEL Team.
'Metrology with Frequency Comb Lasers', 2007 Frequency Comb Vernier Spectroscopy 1 Frequency Comb Vernier spectroscopy C. Gohle, A. Renault, D.Z. Kandula,
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Enhancing the Macroscopic Yield of Narrow-Band High-Order Harmonic Generation by Fano Resonances Muhammed Sayrac Phys-689 Texas A&M University 4/30/2015.
Optimization of Compact X-ray Free-electron Lasers Sven Reiche May 27 th 2011.
CLARA Gun Cavity Optimisation NVEC 05/06/2014 P. Goudket G. Burt, L. Cowie, J. McKenzie, B. Militsyn.
Nonlinear optical effect in the soft x-ray region by two-photon ionization of He + Nonlinear optical effect in the soft x-ray region by two-photon ionization.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
J. Wu March 06, 2012 ICFA-FLS 2012 Workshop Jefferson Lab, Newport News, VA Tolerances for Seeded Free Electron Lasers FEL and Beam Phys. Dept. (ARD/SLAC),
Formatvorlage des Untertitelmasters durch Klicken bearbeiten 1/27/15 Passively CEP-stable front end for optical frequency synthesis 1 Ultrafast Optics.
Frequency combs – evolutionary tree Overview Frequency Metrology Measuring Frequency Gaps Frequency Combs as Optical Synthesizers Time Domain Applicatons.
J. Corlett. June 16, 2006 A Future Light Source for LBNL Facility Vision and R&D plan John Corlett ALS Scientific Advisory Committee Meeting June 16, 2006.
Ultraviolet Light Sources for LAr Detector Calibration A presentation in which I Consider a Number of Modern Methods of Generating Vacuum Ultraviolet Light.
Quantum Optics meets Astrophysics Frequency Combs for High Precision Spectroscopy in Astronomy T. Wilken, T. Steinmetz, R. Probst T.W. Hänsch, R. Holzwarth,
Room-temperature Burst-mode GHz and THz Pulse Rate Photoinjector for Future Light Sources Yen-Chieh Huang * Chia-Hsiang Chen, Kuan-Yan Huang, Fu-Han Chao.
Temporal overlapping for HHG- seeded EUV-FEL operation by using EOS-based timing-drift controlling system H. Tomizawa 1,4 *, S. Matsubara 1, T. Togashi.
Free Electron Laser Studies
Eduard Prat / Sven Reiche :: Paul Scherrer Institute
Ultrashort (few cycles) Pulse Generation in (IR-THz) FELs
Areas of interest Mid-IR FELs Mid-IR FELs THz FELs THz FELs
Two color FEL experiment
Review of Application to SASE-FELs
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Stabilizing the Carrier-Envelope Phase of the Kansas Light Source
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
High harmonic generation in a large-volume capillary for seeding of free-electron lasers Siew Jean Goh.
High energy 6.2 fs pulses Shambhu Ghimire, Bing Shan, and Zenghu Chang
Presentation transcript:

MIT Optics & Quantum Electronics Group Seeding with High Harmonics Franz X. Kaertner Department of Electrical Engineering and Computer Science and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, USA

MIT Optics & Quantum Electronics Group Outline I. Advantages of Seeding II. High-Harmonic Generation III. Optimization of High-Harmonic Generation IV. Carrier-Envelope Phase Control V. Conclusion

MIT Optics & Quantum Electronics Group SASE properties GINGER simulation of SASE FEL at 0.3 nm. Time profileTime profile (log plot)Spectrum Electron beam parameters Energy4.0 GeV Peak current (amp)2000 A RMS emittance 0.8  m RMS energy spread.01 % Charge80 pC Beam power8.0 TW Bunch FWHM40 fs Laser beam parameters Pulse FWHM35 fs (~ebeam length) Saturation power~3.0 GW Energy0.2 mJ FWHM linewidth7.0E-4 Saturation length59 m For simulation speed. True bunch length will be longer. W.S. Graves, MIT Bates Laboratory

MIT Optics & Quantum Electronics Group Seeding for narrow linewidth Output time profileTime profile (log plot) Spectrum Seed laser parameters FWHM50 fs Power0.1 MW Pulse energy 5 nJ FEL output parameters Saturation FWHM 30 fs Saturation power~2.0 GW Saturation energy 0.1 mJ FWHM linewidth 1.0E-5 Saturation length28 m GINGER simulation of seeded FEL at 0.3 nm. Same ebeam parameters as SASE case. W.S. Graves, MIT Bates Laboratory

MIT Optics & Quantum Electronics Group Seeding for short pulse Output time profileTime profile (log plot)Spectrum Seed laser parameters FWHM0.5 fs Power10.0 MW Pulse energy 5 nJ FEL output parameters Saturation FWHM 0.75 fs Saturation power~2.0 GW Saturation energy 1.5  J FWHM linewidth 6.0E-4 Undulator length20 m GINGER simulation of seeded FEL at 0.3 nm. Same ebeam parameters as SASE case. W.S. Graves, MIT Bates Laboratory

MIT Optics & Quantum Electronics Group High-Harmonic Generation Noble Gas Jet (He, Ne, Ar, Kr) 100  J nm 3 – 30 nm  = Recombination Propagation -W b  XUV Energy  x bb 0 Laser electric field Ionization Cut-off Harmonic:

MIT Optics & Quantum Electronics Group Sub-fs High-Harmonic Generation M. Hentschel, et al., Nature, 414, 509 (2001) A. Baltuska, et al., Nature, 421, 612 (2003) Highest wavelength emitted depends on carrier-envelope phase Single-Attosecond pulse (650 as) -> Stable seed energy is only possible with phase controlled laser source Time Electric Field  = 0  =  /2

MIT Optics & Quantum Electronics Group Dependence of HHG on carrier-envelope phase Atomic dipole moment depends on electric field HHG depends on carrier-envelope phase, particularly near cutoff Experiment: Laser intensity.7x10 15 W/cm 2, pulsewidth 5 fs, propagation of 2mm neon, for various carrier-envelope phases Clear dependence of HHG near the cutoff harmonic on CEP Discussion with H. C. Kapteyn: Also 20 fs driver pulses need carrier-envelope stababilization Ref. Brabec et al. … A. Baltuska, et al., Nature, 421, 612 (2003)

MIT Optics & Quantum Electronics Group Published Results: Early pioneers: McPherson et al., J. Opt. Soc Am B4, 595 (1987) Ferry et al., J. Phys. B 21, 131 (1987) New results: Takahashi et al.: 16 mJ, ~30nm), Postdeadline Paper CLEO 2002 Schnürer et al.: Few-cycle pulse: 1mJ, 5 fs  =10 -6, 1 ~30nm Phys. Rev. Lett. 83, (1999) Bartels et al.: Shaped pulses: Nature 406, 164 (2000) improvement by a factor of 30 th harmonic H. C. Kapteyn  = th harmonic Quasi-Phase-Matching: Nature 421, 51 (2002) improvement by a factor of 30 th harmonic -> 1 0 nJ improvement by a factor of 100 th harmonic

MIT Optics & Quantum Electronics Group High Harmonic Generation in Hollow Fibers Courtesy of M. Murnane and H. Kapteyn, JILA

MIT Optics & Quantum Electronics Group Pulse shaping of drive laser can enhance a single harmonic Courtesy of M. Murnane and H. Kapteyn, JILA Quasi-phase matching in modulated hollow-core waveguide. Optimization of HHG How much improvement can we get with additional phase control for the very high harmonics in the water window < 4 nm ?

MIT Optics & Quantum Electronics Group HHG spectra for 3 different periodicities of modulated waveguides. Courtesy of M. Murnane and H. Kapteyn, JILA HHG has produced wavelengths from 50 nm to few nanometers, but power is very low for wavelengths shorter than ~10 nm. Best power at 30 nm. Improvements likely to yield 10 nJ at 8 nm. Rapidly developing technology.

MIT Optics & Quantum Electronics Group Few-Cycle Pulse and HHG Generation In Photonic Bandgap Fiber (Y. Fink, Truly guided modes (assuming infinite coating thickness, strong differentiation between different modes, large core fibers effectively in single mode Modal Dispersion can be engineered for optimum pulse compression and/or phase and group velocity matching in HHG. Temelkuran et al., Wavelength-scalable hollow optical fibers with large photonic bandgaps …, Nature, : p Chalcogenide Glass Poly-Ether Sulfone (PES)

MIT Optics & Quantum Electronics Group Modification of Dispersion in PBG-Fibers Matching of group and phase velocities is possible

MIT Optics & Quantum Electronics Group Phase Controlled Laser Pulses Carrier-Envelope Phase  CE Envelope Field Maximum field depends on  CE L. Xu, et al., Opt. Lett. 21, 2008, (1996) Electric field of a 1.5-cycle optical pulse

MIT Optics & Quantum Electronics Group Carrier-Envelope Phase and Frequency Metrology Periodic Pulse Train with T R = 1 ff T. Udem, et al., PRL 82, 3568 (1999) D. Jones, et al., Science 288, (2000) SHG Frequency f o ff f o + ff f o f CEO Spectrum Optical Clocks Provides an ultrastable modelocked pulse train! The clock of the Facility

MIT Optics & Quantum Electronics Group Octave, Prismless Ti:sapphire Laser Laser crystal: 2mm Ti:Al 2 O 3   PUMP OC 1 OC 2 Base Length = 30cm for 82 MHz Laser L = 20 cm BaF2 - wedges 1mm BaF2

MIT Optics & Quantum Electronics Group DCM-Pairs Covering One Octave Pump Window

MIT Optics & Quantum Electronics Group Spectra from 80 MHz and 150 MHz Laser

MIT Optics & Quantum Electronics Group Broadband, Prismless Ti:sapphire Laser and Carrier-Envelope Detection

MIT Optics & Quantum Electronics Group Carrier-Envelope Beat Frequency Comb for Optical Metrology on Ultracold Hydrogen by Prof. Kleppner

MIT Optics & Quantum Electronics Group High-Harmonic Seed Generation (CPA) A. Baltuska, et al., Nature, 421, 611 (2003) 0.5 mJ

MIT Optics & Quantum Electronics Group High-Harmonic Seed Generation (P-CPA) Yb:YAG Amplifier 1ns, 20mJ, 1-10 nm Q-switched Yb:YAG, 1ns, 1  J 1-10 kHz 2 nd -Harmonic 1ns, 10mJ, nm Carrier-Envelope Stabilized Ti:Sapphire, 4 fs, 100MHz GV-matched P-CPA with BBO 5fs, 5mJ 1-10 kHz Stret- cher Com- pressor Phase Control

MIT Optics & Quantum Electronics Group Stable HHG needs phase controlled high energy pulses (It has been shown to be possible) Optimization of HHG results already to efficiency at 30 nm -> 10 nJ seed energies. Photonic Band Gap fibers lead to novel opportunities for HHG generation because of novel opportunities for phase and group velocity matching Laser technology is rapidly developing from CPA  P-CPA Conclusions