Shan Liu, Philip Bambade, Sha Bai, Dou Wang, Illia Khvastunov ECFA, Hamburg, 29 May, 2013.

Slides:



Advertisements
Similar presentations
Tomsk Polytechnic University1 A.S. Gogolev A. P. Potylitsyn A.M. Taratin.
Advertisements

ATF2 Interaction Point Beam Size Monitor (Shintake Monitor) Status T. Yamanaka, M. Oroku, Y. Yamaguchi, S. Komamiya ( Univ. of Tokyo ), T. Suehara, Y.
Halo calculations in ATF DR Dou Wang (IHEP), Philip Bambade (LAL), Kaoru Yokoya (KEK), Theo Demma (LAL), Jie Gao (IHEP) FJPPL-FKPPL Workshop on ATF2 Accelerator.
Beam Halo Measurement using Diamond Sensor at ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe, N. Fuster-Martínez,
Paul Emma LCLS FAC April 16, Initial Experience with Injector Commissioning P. Emma, et al. Facilities Advisory Committee.
Slide 1 Diamonds in Flash Steve Schnetzer Rd42 Collaboration Meeting May 14.
F.Brinker, DESY, July 17 st 2008 Injection to Doris and Petra Fitting the detector in the IP-region Radiation issues Beam optic, Target cell Polarisation.
Beam Loss Analysis Tool for the CTF3 PETS Tank M. Velasco, T. Lefevre, R. Scheidegger, M. Wood, J. Hebden, G. Simpson Northwestern University, Evanston,
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
experimental platform
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
7.8GHz Dielectric Loaded High Power Generation And Extraction F. Gao, M. E. Conde, W. Gai, C. Jing, R. Konecny, W. Liu, J. G. Power, T. Wong and Z. Yusof.
Fast Timing with Diamond Detectors Lianne Scruton.
Status of the Beamline Simulation A.Somov Jefferson Lab Collaboration Meeting, May 11, 2010.
1 Plans for KEK/ATF 1. Introduction 2. Related Instrumentations at ATF 3. Experimental Plans for Fast Kicker R&D at ATF Junji Urakawa (KEK) at ILC Damping.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
IPBSM - Stability of the laser system - Nobuhiro Terunuma Feb. 12 th 2014, KEK, 17 th ATF2 project meeting.
Laser Stripping and H 0 monitor systems 10/18/2011B.Cheymol, E. Bravin, U. Raich, F. Roncarolo BE/BI1.
CVD diamond detector as a beam monitor for a high intensity and high luminosity accelerator Kodai Matsuoka (Kyoto Univ.) for T2K muon monitor group.
Status of post-IP diamond sensor project for beam core and halo measurements S. Liu, P. Bambade, F. Bogard, P. Cornebise, V. Kubytskyi, C. Sylvia, A. Faus-Golfe,
Recent Experiments at PITZ ICFA Future Light Sources Sub-Panel Mini Workshop on Start-to-End Simulations of X-RAY FELs August 18-22, 2003 at DESY-Zeuthen,
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
Proposal of Halo collimation system for ATF2 A.Faus-Golfe, N. Fuster-Martínez J. Resta-López (IFIC) P. Bambade, S. Liu, S. Wallon (LAL) 113/02/1417th ATF2.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
Analysis of Edge and Surface TCTs for Irradiated 3D Silicon Strip Detectors Graeme Stewart a, R. Bates a, C. Corral b, M. Fantoba b, G. Kramberger c, G.
Electron Detection for Compton Polarimetry Michael McDonald Outline -Compton Effect -Polarimetry -Detectors -Diamond Results.
BES-III Workshop Oct.2001,Beijing The BESIII Luminosity Monitor High Energy Physics Group Dept. of Modern Physics,USTC P.O.Box 4 Hefei,
Design and Detailed Plan for In Vacuum Diamond Sensor for PHIL and ATF2 S. Liu, P. Bambade, F. Bogard, P. Cornebise, I. Khvastnov, H. Monard, C. Sylvia.
Report on CMS 3D sensor tests Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
ATF2 background and beam halo study D. Wang(IHEP), S. Bai(IHEP), P. bambade(LAL) February 7, 2013.
K. Matsuoka (Kyoto Univ.) for T2K muon monitor group
28-May-2008Non-linear Beam Dynamics WS1 On Injection Beam Loss at the SPring-8 Storage Ring Masaru TAKAO & J. Schimizu, K. Soutome, and H. Tanaka JASRI.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
Philip Bambade Laboratoire de l’Accélérateur Linéaire
Charles University Prague Charles University Prague Institute of Particle and Nuclear Physics Absolute charge measurements using laser setup Pavel Bažant,
B. Azadegan, S. A. Mahdipour Hakim Sabzevari University
Location of the LW detector- Simulation of the LW signals Lawrence Deacon RHUL ATF2 meeting August 23 rd 2006 KEK.
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
An electron/positron energy monitor based on synchrotron radiation. I.Meshkov, T. Mamedov, E. Syresin, An electron/positron energy monitor based on synchrotron.
DaMon: a resonator to observe bunch charge/length and dark current. > Principle of detecting weakly charged bunches > Setup of resonator and electronics.
CdTe prototype detector testing Anja Schubert The University of Melbourne 9 May 2011 Updates.
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
C. Weiss 1, 2, G. Badurek 2, E. Berthoumieux 3, M. Calviani 1, E. Chiaveri 1, D. Dobos 1, E. Griesmayer 4,C. Guerrero 1,E. Jericha 2, F. Kaeppeler 5, H.
Beam detectors in Au+Au run and future developments - Results of Aug 2012 Au+Au test – radiation damage - scCVD diamond detector with strip metalization.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
ATF2: Accelerator Test facility A.Jeremie LAPP: A.Jeremie LAL: P.Bambade, Shan Liu, S.Wallon, F.Bogard, O.Blanco, P.Cornebise, I. Khvastunov, V. Kubytskyi.
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Nanometer stabilisation at ATF2 within FJPPL and FKPPL
Alexander Aleksandrov Spallation Neutron Source Oak Ridge, USA
Beam dynamics simulation with 3D Field map for FCC RF gun
Radiation hardness tests of GaAs and Si sensors at JINR S. M
Graeme Stewarta, R. Batesa, G. Pellegrinib, G. Krambergerc, M
ATF2 post-IP Diamond Sensor Status
Slice Parameter Measurements at the SwissFEL Injector Test Facility
Huagen Xu IKP: T. Randriamalala, J. Ritman and T. Stockmanns
Development of the muon monitor for the T2K experiment
OTR based measurements for ELI-NP Gamma Beam Source
FCPPL, Clermont-Ferrand , 8-10 April, 2014
大強度
Application of a Streak camera at PITZ
Vertical Beam Halo Study using Diamond Sensor. June 2015 ATF2
Advanced Research Electron Accelerator Laboratory
Linac Diagnostics Commissioning Experience
Radiation hard sensors for ILC forward calorimeter
Why silicon detectors? Main characteristics of silicon detectors:
CLIC luminosity monitoring/re-tuning using beamstrahlung ?
Presentation transcript:

Shan Liu, Philip Bambade, Sha Bai, Dou Wang, Illia Khvastunov ECFA, Hamburg, 29 May, 2013

Contents Introduction General Study of Beam Halo Beam Halo Measurement and Collimation Diamond Detector R&D Diamond Detector PHIL Summary and Future Plan 2

Diamond Sensor Shintake Monitor Introduction 3 Compton ATF2 Motivations:  Beam halo transverse distribution unknown → investigate halo model  Probe Compton recoiled electron→ investigate the higher order contributions to the Compton process (in the future)

General Study of Beam Halo 4 Theory Beam Halo Generation -> D. Wang, T. Demma MAD-X Simulation -> Halo & IFIC GEANT4/BDSIM Simulation -> I. Khvastunov Diamond PHIL Halo Simulation Experiment In air In vacuum Wire Scanners Instrumentation Diamond Detector R &D Diamond Detector

Beam Halo Measurement Energy spread of halo = ? Unknown; 6 x-> the distance from the beam center as a unit of σ Halo Density T. Suehara et al., “Design of a Nanometer Beam Size Monitor for ATF2”, arXiv: v First beam halo measurements were done in 2005 using the wire scanners in the extraction line -> need to be updated for present beam optics; No energy halo measurement was performed before -> Energy spread of halo is unknown -> can be investigated with wire scanners by measuring halo distribution by changing the vertical dispersion in the diagnostic section.

Scintillation Detector MW2X Cherenkov Detector Wire Scanners & Detectors MW3X MW2X MW4X MW1X-(Post-IP) Diamond Detector 2013 April ATF MW2X MW3X MW1X-(Post-IP) -> Initial data analysis

MW1X-Post IP Wire Scanner Step 2 : X & Y Scan to get Gaussian Peak and sigma Step 1 : Overall Scan to find wire position Y X

Beam Distribution After Normalization 9 Vertical beam Horizontal beam Collimated by MREF3FF? -> to be verified down sideup side Halo+Pedestal+Background?

Mad-X Simulation Results for Beam & Halo & Compton Sensor Total Number (in simulation) Total Number (in experiment) Min. ~ Max. Number/mm Sensor Charge signal/mm 2 Beam * *10 -6 C=1.6887μC Halo (δp/p 0 =0.01) * * C=31.236pC Halo (δp/p 0 =0.0008) * * C=61.376pC Compton *10 ~ 52 *1082.2fC ~ pC 10 δp/p 0 = BeamHaloCompton δp/p 0 =0.01

11 Halo Collimation Energy & betatron collimation needed Vertical Halo Hit BDUMP → may re- generate halo of off- momentum beam particles; Horizontal Halo May cover the Compton signal especially in case of large initial energy spread. Betatron collimation needed Preliminary Halo Compton δp/p 0 =0.01 QF1X QF6X Add collimators R=0.003m Possible to probe Compton R=0.016m QF6X

Diamond Detector Characteristics 13 PHIL  ATF2  Property Diamond Silicon Density (g m -3 ) Band gap (eV) Resistivity (Ω cm) Breakdown voltage (V cm -1 ) Electron mobility (cm 3 V -1 s -1 ) Hole mobility (cm 3 V -1 s -1 ) Saturation elocity (μm ns -1 ) Dielectric constant Neutron transmutation cross-section(mb) Energy per e-h pair (eV) Atomic number Av.min.ionizing signal per 100 μm (e) > Large band-gap ⇒ low leakage current High breakdown field High mobility ⇒ fast charge collection Large thermal conductivity High binding energy ⇒ Radiation hardness Fast pulse ⇒ < 1 ns ADVANTAGES Energy loss of an electron in diamond & silicon

Diamond Detector Characteristics Configurations: - Pads : mm 2 x 500  m - Strips & pixels - Membranes (  5  m) - Orthogonal/ Parallel orientation Types: - Poly crystalline diamond - Single crystalline diamond Diamond detectors Dark Current Measurement 14 Charge created by 1MIP in diamond → 2.74 fC Metallised with Al or Ti/Pt/Au(100nm) Surface: 4.5X4.5mm 2

Detector Holder Design 15 Under design by Frederic Bogard Vacuum Chamber Moveable Stage Horizontal Scan Vertical Scan Diamond Detector Ceramic Base

Diamond Detector PHIL In-vacuum single crystal CVD diamond sensor profile scanner -> for PHIL diagnostic Test of fast remote readout (fast heliax coax cable + ASIC) with particles at end of beam line, using existing single crystal 4.5x4.5mm CVD diamond pad sensor PHIL Electron Beam Parameters (given by Hugues Monard) Charge: 10 pC-250 pC/bunch (1 bunch per RF pulse) ; Duration of Charge: 7 ps FWHM; Charge Stablility: < 2%; Maximum Energy: 5 MeV; Minimum Dispersion: < 1%; Beam Size -> ? 17

First PHIL m RG58 coax cable Experimental Setup Diamond Sensor Electron Beam Camera Performed on

First Test PHIL 19 FilterTotal Charge 100%180pC65V 62%130 pC55V 31%95pC45V 3%14pC7V 0.1%≈0.1pC?40mV Minimum signal Number of electrons Attenuation of cables Charge collection efficiency Calibration

Second PHIL 20 20dB Attenuator YAG screen 8cm 10 cm Dark Current Beam Energy : 3 MeV; Beam Size: σ ≈ 4.5 cm Beam Charge: 33 pC (measured at ICT 1, obtained using a 10% filter on the laser) Performed on

Summary We can investigate halo propagating model by measuring the beam halo using diamond sensor; We probably need to cut the beam halo signal to probe the Compton spectrum. Betatron collimation may be needed for both horizontal and vertical planes as well as energy collimation for horizontal plane (collaboration with IFIC); First tests of diamond PHIL; First measurements of halo at ATF2. Future Plans  Continue data analysis for the ATF2 halo measurement using wire scanners;  Energy halo measurement using wire scanners at ATF2 in June (by S. Bai);  Investigation of halo generation theory (by D. Wang and T. Demma);  BDSIM-GEANT4 simulation for beam halo regeneration study (by I. Khvatunov)  Calibrate the readout of diamond sensor using Sr source in June;  Finish the design of in vacuum detector and detector holder, install and test in PHIL before December; → Install the diamond ATF2 in

Beam Distribution Before Normalization 24

Change the beta_y* 25 Almost no halo loss at BDUMP for BX10BY10 Larger beta_y* can reduce vertical halo hitting BDUMP beam pipe

Vertical Collimation at QD10 Initial Aperture Size: R=0.01m 26 No halo loss at BDUMP Vertical Beam QD10: σ y =0.3336mm 15σ y

Horizontal Collimation at QF1X 27 R=0.003m Compton still covered by halo Energy Spread: Flat deltap= 0.01 Initial Aperture Size: R=0.016m

Horizontal Collimation at QF6X R=0.006mR=0.003m 28 Possible to probe Compton Energy Spread: Flat deltap= 0.01 Initial Aperture Size: R=0.016m