4: Network Layer4b-1 IPv6 r Initial motivation: 32-bit address space completely allocated by 2008. r Additional motivation: m header format helps speed.

Slides:



Advertisements
Similar presentations
Ch 20. Internet Protocol (IP) Internetworking PHY and data link layers operate locally.
Advertisements

TCP/IP Protocol Suite 1 Chapter 27 Upon completion you will be able to: Next Generation: IPv6 and ICMPv6 Understand the shortcomings of IPv4 Know the IPv6.
CPSC Network Layer4-1 IP addresses: how to get one? Q: How does a host get IP address? r hard-coded by system admin in a file m Windows: control-panel->network->configuration-
TCOM 509 – Internet Protocols (TCP/IP) Lecture 06_b Subnetting,Supernetting, CIDR IPv6 Instructor: Dr. Li-Chuan Chen Date: 10/06/2003 Based in part upon.
Computer Networks20-1 Chapter 20. Network Layer: Internet Protocol 20.1 Internetworking 20.2 IPv IPv6.
1 IPv6. 2 Problem: 32-bit address space will be completely allocated by Solution: Design a new IP with a larger address space, called the IP version.
IPv6. Major goals 1.support billions of hosts, even with inefficient address space allocation. 2.reduce the size of the routing tables. 3.simplify the.
CE363 Data Communications & Networking Chapter 7 Network Layer: Internet Protocol.
Chapter 22 IPv6 (Based on material from Markus Hidell, KTH)
CS 457 – Lecture 16 Global Internet - BGP Spring 2012.
1 Internet Protocol Version 6 (IPv6) What the caterpillar calls the end of the world, nature calls a butterfly. - Anonymous.
Network Layer IPv6 Slides were original prepared by Dr. Tatsuya Suda.
IP Version 6 Next generation IP Prof. P Venkataram ECE Dept. IISc.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
N/W Layer Addressing1 Instructor: Anirban Mahanti Office: ICT Class Location: ICT 121 Lectures: MWF 12:00 – 12:50 Notes.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Network Layer4-1 Router Architecture Overview Two key router functions: r run routing algorithms/protocol (RIP, OSPF, BGP) r switching datagrams from incoming.
Network Layer4-1 Chapter 4 Network Layer A note on the use of these ppt slides: We’re making these slides freely available to all (faculty, students, readers).
12 – NAT, ICMP, IPv6 Network Layer4-1. Network Layer4-2 Chapter 4 Network Layer Computer Networking: A Top Down Approach Featuring the Internet, 3 rd.
TDC 375 Winter 2002John Kristoff1 Network Protocols IPv6.
Group members:- Himasweta pattanaik M.A.Sravni Liakat ali khan Agamani karmakar.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
1 ECE453 – Introduction to Computer Networks Lecture 12 – Network Layer (IV)
CS 1652 The slides are adapted from the publisher’s material All material copyright J.F Kurose and K.W. Ross, All Rights Reserved Jack Lange.
12 – IP, NAT, ICMP, IPv6 Network Layer.
McGraw-Hill©The McGraw-Hill Companies, Inc., 2004 Chapter 15 Network Layer Protocols: ARP, IPv4, ICMPv4, IPv6, and ICMPv6.
Router Architecture Overview
Fall 2005Computer Networks20-1 Chapter 20. Network Layer Protocols: ARP, IPv4, ICMPv4, IPv6, and ICMPv ARP 20.2 IP 20.3 ICMP 20.4 IPv6.
IPv6. r Initial motivation: 32-bit address space soon to be completely allocated. r Additional motivation: m header format helps speed processing/forwarding.
1 Network Layer Lecture 16 Imran Ahmed University of Management & Technology.
Network Layer4-1 IP: Internet Protocol r Datagram format r IPv4 addressing r DHCP: Dynamic Host Configuration Protocol r NAT: Network Address Translation.
Network Layer4-1 Chapter 4 roadmap 4.1 Introduction and Network Service Models 4.2 Routing Principles 4.3 Hierarchical Routing 4.4 The Internet (IP) Protocol.
Sharif University of Technology, Kish Island Campus Internet Protocol (IP) by Behzad Akbari.
Page 1 Network Addressing CS.457 Network Design And Management.
Transport Layer3-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
EEC-484/584 Computer Networks Lecture 10 Wenbing Zhao (Part of the slides are based on Drs. Kurose & Ross ’ s slides for their Computer.
Network Layer by peterl. forwarding table routing protocols path selection RIP, OSPF, BGP IP protocol addressing conventions datagram format packet handling.
Data Communications and Computer Networks Chapter 4 CS 3830 Lecture 20 Omar Meqdadi Department of Computer Science and Software Engineering University.
Chapter 27 IPv6 Protocol.
Advance Computer Networks Lecture#11 Instructor: Engr. Muhammad Mateen Yaqoob.
1 Computer Networks IPv6. 2 Motivation The primary motivation from changing the IP datagram format is to increase the size of the useable address space.
Network Layer4-1 NAT: Network Address Translation local network (e.g., home network) /24 rest of.
Network Layer Protocols COMP 3270 Computer Networks Computing Science Thompson Rivers University.
Lecture 13 IP V4 & IP V6. Figure Protocols at network layer.
Network Layer session 1 TELE3118: Network Technologies Week 5: Network Layer Forwarding, Features Some slides have been taken from: r Computer.
4: Network Layer4-1 Chapter 4: Network Layer r 4. 1 Introduction r 4.2 Virtual circuit and datagram networks r 4.3 What’s inside a router r 4.4 IP: Internet.
Network Layer 4-1 Chapter 4 Network Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note.
12 – IP, NAT, ICMP, IPv6 Network Layer.
Homework 4 Out: Fri 2/24/2017 In: Fri 3/10/2017.
Chapter 4: Network Layer
Internet Protocol Version 6 Specifications
Next Generation: IPv6 and ICMPv6
Chapter 4 Network Layer Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 CPSC 335 Data Communication.
Homework 4 Out: Fri 2/26/2016 In: Fri 3/11/2016.
The New Internet Protocol
Chapter Outline 27.1 Introduction 27.2 Packet Format
IPv6 / IP Next Generation
CS 1652 Jack Lange University of Pittsburgh
The New Internet Protocol
What’s “Inside” a Router?
EEC-484/584 Computer Networks
Some slides have been taken from:
Chapter 27 IPv6 Protocol TCP/IP Protocol Suite
Chapter 27 IPv6 Protocol TCP/IP Protocol Suite
Chapter 20. Network Layer: IP
DHCP: Dynamic Host Configuration Protocol
Chapter 4: outline 4.1 Overview of Network layer data plane
Presentation transcript:

4: Network Layer4b-1 IPv6 r Initial motivation: 32-bit address space completely allocated by r Additional motivation: m header format helps speed processing/forwarding m header changes to facilitate QoS m new “anycast” address: route to “best” of several replicated servers r IPv6 datagram format: m fixed-length 40 byte header m no fragmentation allowed

4: Network Layer4b-2 IPv6 Header (Cont) Priority: identify priority among datagrams in flow Flow Label: identify datagrams in same “flow.” (concept of“flow” not well defined). Next header: identify upper layer protocol for data

4: Network Layer4b-3 Other Changes from IPv4 r Checksum: removed entirely to reduce processing time at each hop r Options: allowed, but outside of header, indicated by “Next Header” field r ICMPv6: new version of ICMP m additional message types, e.g. “Packet Too Big” m multicast group management functions

4: Network Layer4b-4 Transition From IPv4 To IPv6 r Not all routers can be upgraded simultaneous m no “flag days” m How will the network operate with mixed IPv4 and IPv6 routers? r Two proposed approaches: m Dual Stack: some routers with dual stack (v6, v4) can “translate” between formats m Tunneling: IPv6 carried as payload n IPv4 datagram among IPv4 routers

4: Network Layer4b-5 Dual Stack Approach

4: Network Layer4b-6 Tunneling IPv6 inside IPv4 where needed