Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, 9.11.2005 Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The.

Slides:



Advertisements
Similar presentations
Lake Baikal Neutrino Experiment Present and Future G.V.Domogatsky (INR, Moscow) for the Baikal collaboration.
Advertisements

Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
AMANDA Lessons Antarctic Muon And Neutrino Detector Array.
10/7/2003C.Spiering, VLVNT Workshop1. 10/7/2003C.Spiering, VLVNT Workshop2  With the aim of constructing a detector of km3 scale in the Northern hemisphere,
Kay Graf University of Erlangen for the ANTARES Collaboration 13th Lomonosov Conference on Elementary Particle Physics Moscow, August 23 – 29, 2007 Acoustic.
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
M. Kowalski Search for Neutrino-Induced Cascades in AMANDA II Marek Kowalski DESY-Zeuthen Workshop on Ultra High Energy Neutrino Telescopes Chiba,
SUSY06, June 14th, The IceCube Neutrino Telescope and its capability to search for EHE neutrinos Shigeru Yoshida The Chiba University (for the IceCube.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Prototype string for a km3 Baikal neutrino telescope Roma International Conference on Astroparticle Physics V.Aynutdinov, INR RAS for the Baikal Collaboration.
Search for relativistic magnetic monopoles with the Baikal Neutrino Telescope E. Osipova -MSU (Moscow) for the Baikal Collaboration (Workshop, Uppsala,
Paolo Piattelli - KM3NeTIAPS - Golden, 6-8 may 2008 KM3NeT: a deep-sea neutrino telescope in the Mediterranean Sea Paolo Piattelli - INFN/LNS Catania (Italy)
KM3NeT The Birth of a Giant V. Popa, KM3NeT Collaboration Institute for Space Sciences, Magurele-Bucharest, Romania.
Hanoi, Aug. 6-12, 2006 Pascal Vernin 1 Antares Status report P.Vernin CEA Saclay, Dapnia On behalf of the Antares collaboration P.Vernin
Coincidence analysis in ANTARES: Potassium-40 and muons  Brief overview of ANTARES experiment  Potassium-40 calibration technique  Adjacent floor coincidences.
EHE Search for EHE neutrinos with the IceCube detector Aya Ishihara for the IceCube collaboration Chiba University.
Moscow, V. Aynutdinov, INR RAS for Baikal collaboration The Baikal neutrino telescope: The Baikal neutrino telescope: Physics results and future.
C.DistefanoCRIS 2008 – Salina, September The KM3Net Consortium Istituto Nazionale di Fisica Nucleare Laboratori Nazionali del Sud Towards a km3-scale.
Status of KM3NeT (Detector Design Optimisations) Christopher Naumann, CEA Saclay – IRFU / SPP for the KM3NeT consortium 44 th Reconcontres de Moriond,
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
Antoine Kouchner Université Paris 7 Laboratoire APC - CEA/Saclay for the ANTARES collaboration Neutrino Astronomy: a new look at the Galaxy Astronomy Neutrino.
CEA DSM Irfu The ANTARES Neutrino Telescope A status report Niccolò Cottini on behalf of the ANTARES Collaboration 44 th Rencontres de Moriond February.
SINP MSU, July 7, 2012 I.Belolaptikov behalf BAIKAL collaboration.
AMANDA and IceCube neutrino telescopes at the South Pole Per Olof Hulth Stockholm University.
Baikal Neutrino Experiment Vladimir Aynutdinov for the Baikal Collaboration Athens, October 13, 2009.
Physics results and perspectives of the Baikal neutrino project B. Shoibonov (JINR, Dubna) for the Baikal collaboration February 2009.
CIPANP 2006K. Filimonov, UC Berkeley From AMANDA to IceCube: Neutrino Astronomy at the South Pole Kirill Filimonov University of California, Berkeley.
Why Neutrino ? High energy photons are absorbed beyond ~ 150Mpc   HE  LE  e - e + HE s are unique to probe HE processes in the vicinity of cosmic.
ANTARES  Physics motivation  Recent results  Outlook 4 senior physicists, ~5 PhD students, ~5 technicians M. de Jong RECFA 23 September 2005.
STATUS OF BAIKAL NEUTRINO EXPERIMENT: Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for the Baikal Collaboration HECR’ May.
Neutrino Diffuse Fluxes in KM3NeT Rezo Shanidze, Thomas Seitz ECAP, University of Erlangen (for the KM3NeT consortium) 15 October 2009 Athens, Greece.
March 02, Shahid Hussain for the ICECUBE collaboration University of Delaware, USA.
NESTOR SIMULATION TOOLS AND METHODS Antonis Leisos Hellenic Open University Vlvnt Workhop.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
Particle Physics: Status and Perspectives Part 7: Neutrinos Manfred Jeitler.
The AMANDA-II Telescope - Status and First Results - Ralf Wischnewski / DESY-Zeuthen for the AMANDA Collaboration TAUP2001, September.
Status and Results Elisa Bernardini DESY Zeuthen, Germany VLVnT Workshop Amsterdam, Oct (
R. Coniglione, VLVnT08, Toulon April ‘08 KM3NeT: optimization studies for a cubic kilometer neutrino detector R. Coniglione P. Sapienza Istituto.
Baikal-GVD: status and plans Denis Kuleshov Denis Kuleshov INR, Moscow, Oct 28, 2015.
Tunka Experiment: Towards 1км 2 EAS Cherenkov Array B.K.Lubsandorzhiev for TUNKA Collaboration.
Gigaton Volume Detector in Lake Baikal: status of the project Zh.-A. Dzhilkibaev (INR, Moscow) Zh.-A. Dzhilkibaev (INR, Moscow) for the Baikal Collaboration.
The BAIKAL Neutrino Telescope: Results and Plans 19 th ERCS, Florence, Italy,September 3 rd, 2004 Ralf Wischnewski DESY-Zeuthen.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Large-scale Underwater/ice Neutrino Telescopes G. Domogatsky (INR RAN, Moscow)
BAIKAL-GVD: status, results and plans Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Amsterdam, October 17,
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The BAIKAL Neutrino Telescope: from NT200 to NT th ICRC Pune, India, Ralf Wischnewski DESY-Zeuthen.
A Device for Detection of Acoustic Signals from Super High Energy Neutrinos Presenter: Presenter: G.L.Pan'kov Applied Physics Institute of Irkutsk State.
Nearly vertical muons from the lower hemisphere in the Baikal neutrino experiment Zh. Dzhilkibaev - INR (Moscow) for the Baikal Collaboration ( Uppsala,
The BAIKAL-GVD project of a km3-scale neutrino telescope in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Beijing, 17 August, International.
Status and Perspectives of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration September.
Gigaton Volume Detector in Lake Baikal Vladimir Aynutdinov for the Baikal Collaboration Cassis, May 3, th International Workshop on Ring Imaging.
Search for Ultra-High Energy Tau Neutrinos in IceCube Dawn Williams University of Alabama For the IceCube Collaboration The 12 th International Workshop.
High energy neutrino acoustic detection activities in Lake Baikal: status and plans N.Budnev for the Baikal Collaboration Irkutsk State University, Russia.
Prototyping Phase of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow), for the Baikal Collaboration for the Baikal Collaboration Rome, May,
THE BAIKAL NEUTRINO EXPERIMENT: STATUS, SELECTED PHYSICS RESULTS, AND PERSPECTIVES Vladimir Aynutdinov, INR RAS, Moscow for the Baikal Collaboration for.
The prototype string for the km3 scale Baikal neutrino telescope VLVnT April 2008 Vladimir Aynutdinov, INR RAS for the Baikal Collaboration for.
Downgoing Muons in the IceCube experiment: Final presentation for Phys 735, Particle, Prof. Sridhara Dasu L.Gladstone 2008 Dec 3.
KM3NeT P.Kooijman Universities of Amsterdam & Utrecht for the consortium.
Imaging the Neutrino Universe with AMANDA and IceCube
Status of the Baikal-GVD experiment
Status of the BAIKAL-GVD Project Zh.-A. Dzhilkibaev, INR (Moscow),
An expected performance of Dubna neutrino telescope
The Antares Neutrino Telescope
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Performance of the AMANDA-II Detector
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
MC studies of the KM3NeT physics performance Rezo Shanidze
Presentation transcript:

Status of the Baikal Neutrino Telescope NT200+ VLVNT2 Workshop, Catania, Ralf Wischnewski DESY, Zeuthen Outline: - Motivation / Methods - The new Detector NT200+ : Design + First Light - Why NT200+ ? - Diffuse cosmic neutrino searches with NT200 - Sensitivity of NT200+ : diffuse cosmic neutrinos. Other physics results from NT200  See talk by Z.Djilkibaev on Friday (Monopoles, WIMPs, HE muons, prompt leptons,..) - Future: A km3 “Gigaton Volume Detector” at Baikal.

R.Wischnewski VLVNT2 Workshop, Catania, High Energy -Astronomy --> Catch first astrophyical HE ’ s  Cosmic ray acceleration sites  New observational window to Universe (new objects ?) Dark Matter (neutralino annihilation in Earth/Sun/Gal.C.) Prompt lepton production in atmosphere ( + µ ; cross sections, …) Exotic particles: Magnetic Monopoles (relativistic or ultra-slow) … CR: HE atmospheric muons (exotic component ?), composition… Neutrino Telescopes: Physics Motivation Astro - Astro - - Particle Physics

R.Wischnewski VLVNT2 Workshop, Catania, HE Neutrino Detection: “Muons” and “Cascades” O(km) long muon tracks direction determination by Cherenkov light timing  5-15 m - Good directionality by Cherenkov timing - Poor energy resolution Charged Current (CC)  Electromagnetic & hadronic cascades ~ 5 m - Good energy resolution - Bad pointing CC e  + Neutral Current

R.Wischnewski VLVNT2 Workshop, Catania, Baikal Baikal Collaboration: Russia – Germany - Institute of Nuclear Research, Moscow - Moscow State University - DESY Zeuthen - Irkutsk State University - Nishni Novgorod State Techn. Univ. - State Marine Techn. Univ. St.Petersburg - Kurchatov Institute, Moscow - JINR, Dubna ~45 authors Project Milestones: >1983: site / water studies; R&D: large area PMT, underwater techno., physics small setups (exotics search) 1991: Project NT200 approved 1993: NT36 – Telescope the first underwater array operates...first  ’s and ’s in NeutrinoTelescope 1998: NT200 commissioned 2005: NT200+ commissioned

R.Wischnewski VLVNT2 Workshop, Catania, km OffShore Depth: 1366 m Shore Station

R.Wischnewski VLVNT2 Workshop, Catania, ExtString 1 ExtString 3 ExtString 2 NT200 Central+Outer Str. New ShoreCable 100 m Foto from March, 2005, 4km off-shore: NT200+ deployment from 1m thick ice. Ice – A perfect natural deployment platform Ice is stable for 6-8 winter-weeks/year : –Upgrades & maintenance –Test & installation of new equipment –Operation of surface detectors (EAS, acoustics,… ) –Electrical winches used for deployment operations (all connections done dry)

R.Wischnewski VLVNT2 Workshop, Catania, NT200 running since strings with 192 optical modules m height, R=20m, 1070m depth, V geo =0.1Mton - -  effective area: >2000 m 2 (E  >1 TeV) - - Shower Eff Volume: ~1 Mton at 1 PeV NT200+ commissioned April 9, new strings, 200 m height, 36 OMs new bright Laser for time calibration imitation of 10 PeV-500 PeV cascades, >10^13 photons/pulse w/ diffusor,  SNO-Calib - 2 new 4km cables to shore - - DAQ – New Underwater & Shore Station: Underwater Linux embedded PCs, Industrial Ethernet Systems 4 Km to shore NT200+ is tailored to UHE n-induced cascades - 5 Mton equipped volume - V_eff >10 Mton at 10 PeV  4fold sensitivity gain with only 20% additional PMTS. The Baikal Detector NT200+

R.Wischnewski VLVNT2 Workshop, Catania, Km to shore DAQ and Slow Control of NT200+ DAQ Modernization (2004/05): - First PCs/PC104 used underwater; - DSL Mbps to shore (w/ spare); - - UW-ethernet (hot spares); - - Full multiplexing of all data/control streams; - - Industrial auxiliary components (EthRelais,...) - - Linux (uw + shore) UW-PCs and other Central DAQ-Spheres UW-PCs design NT200+ DAQ/SlowControl schematcis

R.Wischnewski VLVNT2 Workshop, Catania, Laser intensity ~ –  /pulse E_Shower ~ 10 – 500 PeV - Ch.13 – 187 m away from Laser - - Time Jitter = Light Scattering + Electronics First light on NT200+: Laser pulses as high-energy cascades FWHM !

R.Wischnewski VLVNT2 Workshop, Catania, t1t1t1t1 t2t2t2t2 t 12 5 series of Laser pulses NT200+ time resolution  t = t 1 + t 12 – t 2  t 1,  t 2 - PMT jitter and light scattering  t 12 )  2 ns - electronics jitter Light scattering - scattering length 30 m - distance to Laser ~200 m Jitter of electonics ~2 ns Jitter of electonics ~2 ns - synchro cable length 1.2 km - TDC bin 2 ns The amplitude dependence of relative time jitter measured for several pairs of channels of NT200 and external strings. Red line is result of Scat_MC calculation.

R.Wischnewski VLVNT2 Workshop, Catania, Laser intensity reconstruction  r < 1 m  I/I ~ 6% lowest intensity five laser intensities NT200+: “Laser-cascade” reconstruction NT200 NT outer str. Reconstruct z-r Laser vertex reconstruction

R.Wischnewski VLVNT2 Workshop, Catania, Why NT200+ ? Diffuse Cosmic Neutrino Search with NT200.

R.Wischnewski VLVNT2 Workshop, Catania, NT200: Search for High Energy Diffuse Cascades Watch the non-instrumented volume below detector for cascades = Upward moving light fronts.  („BG“) large effective volume NT200 V geo (NT-200) 10 Mton Effective Volume vs. Energy NT200+ : Instrument the volume below detector  better BG suppression and improved physics.

R.Wischnewski VLVNT2 Workshop, Catania, Limits for diffuse cosmic neutrino fluxes 1:1:1 flavor flux limits given for all-flavors (  e + e +  +  +  +  ) Baikal + Amanda 1 : B10, 97, ↑μ 2 : A-II, 2000, unfold. 3 : A-II, 2000, cascade 4 : B10, 97, UHE 5 : NT200, 98-02, cascade 6: A-II, 2000, UHE sens. 7: A-II, ↑μ sens. 8: IceCube 3 years 9: NT200+, 3yr, casc sens Baikal Cascades (98-02) subm. APP

R.Wischnewski VLVNT2 Workshop, Catania, Expectation for NT200+ ‘s Predicted all-flavor-sensitivity for astrophysical ‘s : E 2 Ф < 2.7 · GeV cm -2 s -1 sr -1 (3 years) ~ A-II / 4yr mu  3-4 fold improvement over NT200. Much improved reconstruction of cascade coordinates + energy NT200 NT200 NT200+ NT200+ Is a conservative predicition: vertex + energy reconstruction will improve sensitivity ! e 15Mton 30Mton

R.Wischnewski VLVNT2 Workshop, Catania, Future: A Gigaton Volume (km3) Detector at Baikal

R.Wischnewski VLVNT2 Workshop, Catania, NT important step towards a Baikal NT200+ as a subunit of a km3 scale detector. For High Energy Cascades: A single small string replacing the NT200 central core reduces V eff less than x3 for E>100TeV.  A short string instead of NT200 as a subunit for a Gton scale detector is ok ! 140 m Effective volume for simplified NT200’s. e

R.Wischnewski VLVNT2 Workshop, Catania, Sparse instrumentation: 91 strings with 12/16 OM = 1308 OMs  Casacde effective volume for 100 TeV: ~ km³   Muon threshold between 10 and 100 TeV Baseline schedule: - R&D +TechDesRep Funded. - - Construction ≥2009. A Gigaton (km3) Detector in Lake Baikal Mini NT200+

R.Wischnewski VLVNT2 Workshop, Catania, Basic detector element is NT200+. Under “Real Physics Test“ since 4/ Dedicated R&D for Baikal/km3 – technology starts in Redesign of some key elements is under consideration. Issues: - - Optical Module: Quasar vs other? Grouping 2 vs 3? FADC readout? Time synchronization: electrical vs. optical, System architecture: subarray trigger, string controller, data transfer, Auxiliary systems: acoustic positioning, bright laser sources, … - - MC design optimization Interaction Baikal/km3  KM3NeT : Common activities for a few selected technical issues - could this be useful ? e.g. OMs (design/in-situ MC (design; verification); TimeSync.; Auxil.Dev.; …,... A Gigaton (km3) Detector in Lake Baikal - Status -

R.Wischnewski VLVNT2 Workshop, Catania, The Baikal Telescope is successfully running since >10 years.NT200 - High Sensitivity in HE-diffuse search (cascades): “Mton-detector” - Number of relevant other results: Magnetic Monopoles, WIMPs, GRB, atm.  NT Natural upgrade after diffuse NT200–success story: New 5 Mton instrumented detector commissioned in April, Tailored to diffuse cosmic nu’s: >10Mton at 10PeV. Diffuse sensitivity: E 2 Ф  < 0.9 ·10 -7 GeV cm -2 s -1 sr -1 (3yr NT200+) - Shower analysis improvement: vertex, energy + direction. - UHE cosmic  and transient sources: sensitivities under study. Future: Gigaton Volume Detector (km3) in Baikal. - NT200+ serves as realistic test object. Technical Proposal within 3 yrs. Summary see talk on physics by Z.Djilkibaev