 decay:Present and Future Ruben Saakyan UCL 8 November 2004 Manchester University Particle Physics seminar PREVIEW Motivation Present status Status of.

Slides:



Advertisements
Similar presentations
COBRA A new Approach to -Decay UK HEP Forum, Abingdon, May 11 th, 2003 Daniel Muenstermann University of Dortmund COBRA.
Advertisements

NEMO-3 experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Coseners House, Abingdon.
IS THE NEUTRINO A MAJORANA OR A DIRAC PARTICLE ? Ettore Fiorini, Bologna June or Lepton number conservation or violation Has neutrino a finite.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Status of  decay Ruben Saakyan UCL. Outline Motivation  decay basics Results so far Current experiments Future projects and sensitivity.
SuperNEMO Thoughts about next generation NEMO experiment Ruben Saakyan UCL.
Double Beta Decay review
March 12, 2005Benasque Neutrinos Theory Neutrinos Theory Carlos Pena Garay IAS, Princeton ~
Double Beta Decay L=2 2: (A,Z)  (A,Z+2) + 2e- + 2ne
 decay and neutrino mass 35 isotopes in nature …and Mixing Neutrino Mass.. Imperial College/RAL Nottingham Nov 17 ’04 Dave Wark.
SNOW 2006, StockholmNEMO 3 and SuperNEMO experiments Vladimir Vasiliev, UCL 2-6 May ’06, Stockholm on behalf of NEMO and SuperNEMO collaborations NEMO.
COBRA Kai Zuber University of Sussex 5 th SNOLAB Workshop,
 NEMO-3 Detector  Preliminary results Performance of the detector  analysis for 100 Mo, 82 Se and 150 Nd  Background study for  research ( 208.
Experimental status of the Double Beta Decay Marisa Pedretti INFN Milano Bicocca.
GERDA: GERmanium Detector Array
Neutrino Mass and Mixing David Sinclair Carleton University PIC2004.
Erice, Kai Zuber1 Status of the COBRA Experiment K. Zuber, TU Dresden.
DBD matrix elements Welcome and aim of the workshop Experimental situation Outcome.
From CUORICINO to CUORE: To probe the inverted hierarchy region On behalf of the CUORE collaboration DUSL Meeting, Washington DC November 2,-4, 2007 Frank.
Daniel Lenz, University of Wisconsin, Madison 11/05/ APS DNP Cryogenic search for neutrinoless double beta decay Daniel Lenz on behalf of the CUORE.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory
No s is good s Sheffield Physoc 21/04/2005 Jeanne Wilson A historical introduction to neutrinoless double beta decay.
The SuperNEMO experiment A very low background experiment Jérémy ARGYRIADES, LAL Orsay.
Contents Lecture 1 General introduction What is measured in DBD ? Neutrino oscillations and DBD Other BSM physics and DBD Nuclear matrix elements Lecture.
Double beta decay Ruben Saakyan UCL 25 March 2004.
Double Beta Decay Present and Future
First results from NEMO 3 Experiment V. Vasiliev (ITEP), H. Ohsumi (Saga) and Ch. Marquet Nara, Japan, June 2003 NEMO collaboration.
NEMO-3  experiment First Results and Future Prospects Ruben Saakyan, UCL UK HEP Neutrino Forum The Cosener’s House, Abingdon.
Warsaw - NEMO initiative group Zenon Janas for Search for neutrinoless double  decay in NEMO-3 and SuperNEMO experiments Warszawa,
NEMO-3 Double Beta Decay Experiment: Last Results A.S. Barabash ITEP, Moscow (On behalf of the NEMO Collaboration)
Status of R&D of the SuperNEMO experiment Gwénaëlle Broudin-Bay LAL Orsay GDR neutrino – Bordeaux – Oct
FIRST RESULTS OF THE NEMO 3 EXPERIMENT Laurent SIMARD LAL Orsay (France) HEP-EPS 2003 conference CENBG, IN2P3-CNRS et Université de Bordeaux, France CFR,
From Cuoricino to CUORE: towards the inverted hierarchy region Andrea Giuliani On behalf of the CUORE collaboration University of Insubria (Como) and INFN.
Status of COBRA 6 th SNOLAB Workshop, Picture courtesy
Recent Results of the NEMO 3 Experiment Ladislav VÁLA Czech Technical University in Prague NOW2006, 9 th – 16 th September 2006, Conca Specchiulla, Italy.
Double beta decay and neutrino physics Osaka University M. Nomachi.
Andrea Giuliani University of Insubria (Como) and INFN Milano-Bicocca Italy Searches for Neutrinoless Double Beta Decay Epiphany Conference Krakow 6 th.
Results of NEMO 3 and status of SuperNEMO Ladislav VÁLA on behalf of the NEMO 3 and SuperNEMO collaborations Institute of Experimental and Applied Physics.
Present status of CUORE / CUORICINO Andrea Giuliani Università dell’Insubria and INFN Milano 3rd IDEA meeting, Orsay, April 14 – 15, 2005.
NEMO-3 Experiment Neutrino Ettore Majorana Observatory FIRST RESULTS Xavier Sarazin 1 for the NEMO-3 Collaboration CENBG, IN2P3-CNRS et Université de Bordeaux,
Neutrino Ettore Majorana Observatory
Neutrinoless double-beta decay and the SuperNEMO project. Darren Price University of Manchester 24 November, 2004.
Zakład Spektroskopii Jądrowej IFD UW Zenon Janas Poszukiwanie podwójnego bezneutrinowego rozpadu beta w eksperymencie NEMO-3 Warszawa,
IOP HEPP Matthew Kauer Double beta decay of Zr96 using NEMO- 3 and calorimeter R&D for SuperNEMO IOP HEPP April Matthew Kauer UCL London.
Position sensitive CZT detectors for the COBRA neutrinoless double beta decay project Brian Fulton University of York Neutrinoless double beta decay The.
Reactor neutrinos, double beta and beta decays Experimental review Fabrice Piquemal Laboratoire Souterrain de Modane (CNRS/IN2P3 and CEA/IRFU) and Centre.
DOUBLE BETA DECAY TO THE EXCITED STATES (EXPERIMENTAL REVIEW) A.S. BARABASH ITEP, MOSCOW.
Neutrino Ettore Majorana Observatory
28 May 2008NEMO-3 Neutrino081 NEMO-3 A search for double beta decay Robert L. Flack University College London On behalf of the NEMO-3 collaboration.
May 19, 2005UAM-IFT, Madrid : Neutrino physics in underground labs Carlos Pena Garay IAS ~
NEMO3 experiment: results G. Broudin-Bay LAL (CNRS/ Université Paris-Sud 11) for the NEMO collaboration Moriond EW conference La Thuile, March 2008.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
Stefano Torre University College London for NEMO3 and SuperNEMO collaborations Half day IoP Meeting 12 Oct 2011 Outline 0νββ and 2νββ Observation technique.
Double Beta Decay Experiments Jeanne Wilson University of Sussex 29/06/05, RAL.
By Matthew Kauer First Year Report – 15 June 07 Measurement of 2b2ν Half-Life of Zr96 and Lightguide Studies for SuperNEMO Calorimeter Matthew Kauer UCL.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
Physics at UCL MINOS and NEMO-III Ruben Saakyan UCL Sheffield Particle Physics seminar 12 November 2003.
Proposal to join NEMO-3  decay experiment P. Adamson, R. Saakyan, J. Thomas UCL 27 January 2003.
Double Beta Decay - status and future Double beta decay basics Double beta decay basics Experimental challenges Experimental challenges Current experimental.
1 Double Beta Decay of 150 Nd in the NEMO 3 Experiment Nasim Fatemi-Ghomi (On behalf of the NEMO 3 collaboration) The University of Manchester IOP HEPP.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
Search for Neutrinoless Double Beta Decay with NEMO-3 Zornitza Daraktchieva University College London On behalf of the NEMO3 collaboration PANIC08, Eilat,
The NEMO3 Double Beta Decay Experiment Ruben Saakyan IoP meeting on Double Beta Decay Manchester 21 November 2007.
Probing neutrinos with  decay Ruben Saakyan UCLSwansea 31 January January 2006.
Yuri Shitov Imperial College London On behalf of the NEMO Collaboration A search for neutrinoless double beta decay: from NEMO-3 to SuperNEMO Moriond EW.
Search for Neutrinoless Double-Beta Decay Werner Tornow Duke University & Triangle Universities Nuclear Laboratory (TUNL) & Kavli-Tokyo Institute of the.
Double Beta Decay - status and future
Search for 0nbb decay with SuperNEMO
Double beta decay and Majorana neutrinos
of double beta decay experiments (outside of Japan)
Presentation transcript:

 decay:Present and Future Ruben Saakyan UCL 8 November 2004 Manchester University Particle Physics seminar PREVIEW Motivation Present status Status of “evidence” Future projects UK in NEMO/SuperNEMO

Motivation Neutrino Mixing Observed ! From KamLAND, solar and atmospheric VERY approximately  m 2 LMA ≈ 5×10 -5 eV 2 = (7 meV) 2  m 2 atm ≈ 2.5×10 -3 eV 2 = (50 meV) 2

Neutrino MASS What do we want to know? Relative mass scale ( -osc) Mass hierarchy ( -osc and  ) Absolute mass scale (    ) Dirac or Majorana 1  3 e U e1 2 U e2 2 U e3 2 Mixing Only from  From -osc ~ eV ~ eV preferred by theorists (see-saw) degenerate: > 0.1 eV

 Decay Basics In many even-even nuclei,  decay is energetically forbidden. This leaves  as the allowed decay mode. Q  Endpoint Energy

Double beta decay and neutrino mass  L=0  L=2 ! Q 

Effective Majorana Mass (inverted hierarchy case) U e1 2 m 1 U e2 2 m 2 U e3 2 m 3 min

Isotopes Best candidates: 76 Ge, Q   MeV 48 Ca, Q   MeV 82 Se, Q   MeV 100 Mo, Q   MeV 116 Cd, Q   MeV 130 Te, Q   MeV 136 Xe, Q   2.48 MeV 150 Nd, Q   MeV High Q  is important ( G 0 ~ Q  5, G 2 ~ Q  11 ) In most cases enrichment is a must Different isotopes must be investigated due to uncertainties in NME calculations !

The Experimental Problem ( Maximize Rate/Minimize Background) Natural Activity:  ( 238 U, 232 Th) ~ years Target:  (0  ) > years  Detector Shielding Cryostat, or other experimental support Front End Electronics etc. + Cosmic ray induced activity

A History Plot < 0.35 – 0.9 eV m scale ~ 0.05 eV from oscillation experiments

Hieldeberg-Moscow (Gran Sasso) ( Spokesperson: E. Klapdor-Kleingrothaus, MPI) = 0.4 eV ??? 5 HPGe 11 kg, 86% 76 Ge  E/E  0.2% >10 yr of data taking < 0.3 – 0.7 eV If combine HM and IGEX First claim (end 2001)

Heidelberg claim. Recent developments hep-ph/ , NIMA, Phys. Rev… Data analysed for 1990 – kgyr Data reanalyzed with improved binning/summing Peak visible Effect reclaimed with 4.2 = (0.2 – 0.6) eV, 0.4 eV best fit = (0.1 – 0.9) eV (due to NME) Looks more like 2.5 of effect 214 Bi line intensities do not match  214 Bi unknown Personal view

CUORICINO (bolometer) NEMO-3 (Tracking calorimeter) These two will be determining  fate until ~ Sensitivity ~ 0.2 eV Current Experiments

Located in LNGS, Hall A Cuoricino (Hall A) CUORE R&D (Hall C) CUORE (Hall A) Today:CUORICINO

Incident particle absorber crystal heat bath Thermal sensor Today: CUORICINO 2 modules, 9 detector each, crystal dimension 3x3x6 cm 3 crystal mass 330 g 9 x 2 x 0.33 = 5.94 kg of TeO 2 11 modules, 4 detector each, crystal dimension 5x5x5 cm 3 crystal mass 790 g 4 x 11 x 0.79 = kg of TeO kg total

Today:CUORICINO Operation started early 2003 BG = 0.19 counts/kev/kg/y  E/E = 4 2 MeV Neutrino 2004:  m  < 0.3 – 1.6 eV (all NME)

AUGUST 2001 Today: NEMO-III

100 Mo kg Q  = 3034 keV  decay isotopes in NEMO-3 detector 82 Se kg Q  = 2995 keV 116 Cd 405 g Q  = 2805 keV 96 Zr 9.4 g Q  = 3350 keV 150 Nd 37.0 g Q  = 3367 keV Cu 621 g 48 Ca 7.0 g Q  = 4272 keV nat Te 491 g 130 Te 454 g Q  = 2529 keV  measurement External bkg measurement  search (All the enriched isotopes produced in Russia)

Drift distance 100 Mo foil Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Geiger plasma longitudinal propagation Scintillator + PMT Deposited energy: E 1 +E 2 = 2088 keV Internal hypothesis: (  t) mes –(  t) theo = 0.22 ns Common vertex: (  vertex)  = 2.1 mm Vertex emission (  vertex) // = 5.7 mm Vertex emission Transverse view Longitudinal view Run Number: 2040 Event Number: 9732 Date: Criteria to select  events: 2 tracks with charge < 0 2 PMT, each > 200 keV PMT-Track association Common vertex Internal hypothesis (external event rejection) No other isolated PMT (  rejection) No delayed track ( 214 Bi rejection)  events selection in NEMO-3 Typical  2 event observed from 100 Mo Trigger: 1 PMT > 150 keV 3 Geiger hits (2 neighbour layers + 1) Trigger rate = 7 Hz  events: 1 event every 1.5 minutes

(Data 14 Feb – 22 Mar. 2004) T 1/2 = 7.72  0.02 (stat)  0.54 (syst)  y 100 Mo 2  2 preliminary results 4.57 kg.y Cos(  ) Angular Distribution Background subtracted 2  2 Monte Carlo Data events 6914 g days S/B = 45.8 NEMO Mo E 1 + E 2 (keV) Sum Energy Spectrum events 6914 g days S/B = 45.8 NEMO Mo Data Background subtracted 2  2 Monte Carlo

Simkovic, J. Phys. G, 27, 2233, 2001 Single electron spectrum different between SSD and HSD 100 Mo 2  2 Single Energy Distribution 2  2 HSD Monte Carlo HSD higher levels Background subtracted Data 2  2 SSD Monte Carlo Background subtracted Data SSD Single State HSD: T 1/2 = 8.61  0.02 (stat)  0.60 (syst)  y SSD: T 1/2 = 7.72  0.02 (stat)  0.54 (syst)  y 100 Mo 2  2 single energy distribution in favour of Single State Dominant (SSD) decay 4.57 kg.y E 1 + E 2 > 2 MeV 4.57 kg.y E 1 + E 2 > 2 MeV HSD, higher levels contribute to the decay SSD, 1  level dominates in the decay (Abad et al., 1984, Ann. Fis. A 80, 9) 100 Mo 00 100 Tc 11   /ndf = 139. / 36   /ndf = 40.7 / 36 NEMO-3 E single (keV)

Today:NEMO-III Present 90%CL limits from NEMO-III(216.4 days) 82 Se:T 1/2 (  ) > y,  m  < 1.3 – 3.6 eV Simkovic et al., Phys. Rev. C60 (1999) Stoica, Klapdor, Nucl. Phys. A694 (2001) Caurier et al., Phys. Rev. Lett (1996) 100 Mo T 1/2 (  ) > y,  m  < 0.7 – 1.2 eV Simkovic et al., Phys. Rev. C60 (1999) Stoica, Klapdor, Nucl. Phys. A694 (2001) Expected Reach in 5 years after RadonPurification 100 Mo T 1/2 (  ) > y,  m  < 0.2 – 0.35 eV 82 Se:T 1/2 (  ) > y,,  m  < 0.65 – 1.8 eV

Strategy for future. An Ideal Experiment  Large Mass (  0.1t)  Good source radiopurity  Demonstrated technology  Natural isotope  Small volume, source = detector  Tracking capabilities  Good energy resolution or/and Particle ID  Ease of operation  Large Q value, fast  (0 )  Slow  (2 ) rate  Identify daughter  Event reconstruction  Nuclear theory  All requirements can NOT be satisfied  Red – must be satisfied

A Great Number of Proposals ( Some may start taking data in ) DCBANd kg Nd layers between tracking chambers SuperNEMOSe-82, Various100 kg of Se-82(or other) foil COBRA CAMEO Te-130,Cd-116 Cd-116 CdTe semiconductors 1 t CdWO 4 crystals CANDLESCa-48Several tons CaF 2 crystals in liquid scint. CUORETe kg TeO 2 bolometers EXOXe-1361 ton Xe TPC (gas or liquid) GEMGe-761 ton Ge diodes in liquid nitrogen GERDAGe ton Ge diodes in LN 2 /LAr GSOGd-1602 t Gd 2 SiO 5 :Ce crystal scint. in liquid scint. MajoranaGe kg Ge diodes MOONMo-100Mo sheets between plastic scint., or liq. scint. XeXe t of Xe in liq. Scint. XMASSXe t of liquid Xe

GERDA. 76 Ge Phase I: collect 76 Ge detectors from HM(11kg)+IGEX(8kg) 15kg  c/keV/kg/y  sens-ty: 3·10 25 y, eV Confirm Klapdor with 5  OR rule out at 98% Phase II:enlarge to ~35-40 kg BG < c/keV/kg/y within 4 yr ~ 100 kg  y  2·10 26 y, eV Phase III: ton Possible merge with Majorana ~ 0.03 eV “Naked” 76 Ge detectors in LN 2 /LAr Original idea from GENIUS (Klapdor)

Cryogenic Underground Observatory for Rare Events - CUORE Berkeley Firenze Gran Sasso Insubria (COMO) Leiden Milano Neuchatel U. of South Carolina Zaragoza Spokesperson Ettore Fiorini Milano

CUORE CUORICINO×20  270 kg 130 Te (~ 750 kg nat Te) Compact: 70×70×70 cm 3 5 yr in Gran Sasso: ~ 0.04 eV APPROVED !

The Majorana Project Duke U. North Carolina State U. TUNL Argonne Nat. Lab. JINR, Dubna ITEP, Moscow New Mexico State U. Pacific Northwest Nat. Lab. U. of Washington LANL LLNL U. of South Carolina Brown Univ. of Chicago RCNP, Osaka Univ. Univ. of Tenn. Co-Spokespersons Frank Avignone Harry Miley

Majorana 0.5 ton of 86% enriched 76 Ge Very well known and successful technology Segmented detectors using pulse shape discrimination to improve background rejection. Prototype ready to go this autumn/winter. (14 crystals, 1 enriched) 100% efficient Can do excited state decay. 5 yr in a US undegr lab ~ 0.03 eV

Enriched Xenon Observatory - EXO U. of Alabama Caltech IBM Almaden ITEP Moscow U. of Neuchatel INFN Padova SLAC Stanford U. U. of Torino U. of Trieste WIPP Carlsbad Spokesperson Giorgio Gratta Stanford

EXO 10 ton, ~70% enriched 136 Xe 70% effic., ~10 atm gas TPC or LXe chamber Optical identification of Ba ion. Drift ion in gas to laser path or extract on cold probe to trap. 200-kg enr Xe prototype (no Ba ID) being built Isotope in hand 5 yr in a US underground lab ~ 0.05 eV

Cadmium-Telluride O-neutrino double-Beta Research Apparatus COBRA Sussex Oxford Dortmund Warwick Project Leader Kai Zuber Sussex CdTe or CdZnTe semiconductor detectors Good  E/E Two isotopes 116 Cd and 130 Te Operate at room temperature New approach Large R&D programme needed If successful can get to ~10-20 meV in ~ 20yr

SuperNEMO UCL Manchester IC LAL, Orsay Bordeaux Strasbourg Prague ITEP (Moscow) JINR (Dubna) Saga Univ. (Japan) INEEL (USA) MHC (USA) NEMO3 x 10 + better  E/E robust and developed technology quick start (100 kg of isotope) F ~ (  E /E) 6

Isotopes in SuperNEMO IsotopeQ, MeV 100 Mo Se Cd Te2.529 Factor of 10 lower BG for 82 Se Can be produced in centrifuge - $30K-$50K/kg

SuperNEMO 4 supermodules Planar geometry 100 kg 82 Se (Q  = 3 MeV, large T 1/2 2  Sensitivity ~0.04 eV in 5 yr Feasible if Zero BG experiment: 1) No BG from radioactivity the only possible BG from 2 tail (NEMO-III) 2) Improve  E/E from existing (14%-16%)/  E to (8%-10%)/  E Demonstrated (UCL+ Dubna) Boulby mine is an attractive experimental site

SuperNEMO. Time Scale 2004 – 2005 scintillator R&D Attempt to reach 5-6% : Design study proposal (PPRP, Dec-Feb) Prototype submodule in Boulby : Production : Start taking data 2014: planned sensitivity ~0.04 eV Excellent chance to be the first to reach meV

Concluding Remarks Very exciting time for neutrino physics in general and 0  in particular From oscillations: positive signal is a serious possibility “Good value”: ~$50M for the great potential scientific gain Several experiments with different isotopes are needed (recall NME uncertainties)