Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Magnetotransport in CeMIn 5 Scanning Tunneling Microscopy on heavy fermion.

Slides:



Advertisements
Similar presentations
Scanning tunnelling spectroscopy
Advertisements

CHAPTER 4 CONDUCTION IN SEMICONDUCTORS
Quasiparticle Scattering in 2-D Helical Liquid arXiv: X. Zhou, C. Fang, W.-F. Tsai, J. P. Hu.
Iron pnictides: correlated multiorbital systems Belén Valenzuela Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) ATOMS 2014, Bariloche Maria José.
From weak to strong correlation: A new renormalization group approach to strongly correlated Fermi liquids Alex Hewson, Khan Edwards, Daniel Crow, Imperial.
Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)
SDW Induced Charge Stripe Structure in FeTe
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Oda Migaku STM/STS studies on the inhomogeneous PG, electronic charge order and effective SC gap of high-T c cuprate Bi 2 Sr 2 CaCu 2 O 8+  NDSN2009 Nagoya.
Fluctuating stripes at the onset of the pseudogap in the high-T c superconductor Bi 2 Sr 2 CaCu 2 O 8+  Parker et al Nature (2010)
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Electronic structure of La2-xSrxCuO4 calculated by the
Modeling strongly correlated electron systems using cold atoms Eugene Demler Physics Department Harvard University.
High Temperature Superconductivity: The Secret Life of Electrons in Cuprate Oxides.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
Rinat Ofer Supervisor: Amit Keren. Outline Motivation. Magnetic resonance for spin 3/2 nuclei. The YBCO compound. Three experimental methods and their.
Optics on Graphene. Gate-Variable Optical Transitions in Graphene Feng Wang, Yuanbo Zhang, Chuanshan Tian, Caglar Girit, Alex Zettl, Michael Crommie,
UCSD. Tailoring spin interactions in artificial structures Joaquín Fernández-Rossier Work supported by and Spanish Ministry of Education.
Charge Inhomogeneity and Electronic Phase Separation in Layered Cuprate F. C. Chou Center for Condensed Matter Sciences, National Taiwan University National.
Introduction to the Kondo Effect in Mesoscopic Systems.
Free electrons – or simple metals Isolated atom – or good insulator From Isolation to Interaction Rock Salt Sodium Electron (“Bloch”) waves Localised electrons.
Wittenberg 2: Tunneling Spectroscopy
Theory of the Quantum Mirage*
Non equilibrium noise as a probe of the Kondo effect in mesoscopic wires Eran Lebanon Rutgers University with Piers Coleman arXiv: cond-mat/ DOE.
Quick and Dirty Introduction to Mott Insulators
Introductory Nanotechnology ~ Basic Condensed Matter Physics ~
From Kondo and Spin Glasses to Heavy Fermions, Hidden Order and Quantum Phase Transitions A Series of Ten Lectures at XVI Training Course on Strongly Correlated.
Huiqiu Yuan Department of Physics, Zhejiang University, CHINA Field-induced Fermi surface reconstruction near the magnetic quantum critical point in CeRhIn.
Slide # 1 SPM Probe tips CNT attached to a Si probe tip.
Ying Chen Los Alamos National Laboratory Collaborators: Wei Bao Los Alamos National Laboratory Emilio Lorenzo CNRS, Grenoble, France Yiming Qiu National.
MgB2 Since 1973 the limiting transition temperature in conventional alloys and metals was 23K, first set by Nb3Ge, and then equaled by an Y-Pd-B-C compound.
Basic Electronics By Asst Professor : Dhruba Shankar Ray For B.Sc. Electronics Ist Year 1.
Dung-Hai Lee U.C. Berkeley Quantum state that never condenses Condense = develop some kind of order.
Incommensurate correlations & mesoscopic spin resonance in YbRh 2 Si 2 * *Supported by U.S. DoE Basic Energy Sciences, Materials Sciences & Engineering.
Chap. 41: Conduction of electricity in solids Hyun-Woo Lee.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
(b) Constant height mode Measure the tunneling current while scanning on a given, smooth x-y-z contour. The z-position (output of feedback loop) is measured.
Generalized Dynamical Mean - Field Theory for Strongly Correlated Systems E.Z.Kuchinskii 1, I.A. Nekrasov 1, M.V.Sadovskii 1,2 1 Institute for Electrophysics.
Superconductivity and non-Fermi-liquid behavior of Ce 2 PdIn 8 V. H. Tran et al., PHYSICAL REVIEW B 83, (2011) Kitaoka Lab. M1 Ryuji Michizoe.
Kondo Physics, Heavy Fermion Materials and Kondo Insulators
Peak effect in Superconductors - Experimental aspects G. Ravikumar Technical Physics & Prototype Engineering Division, Bhabha Atomic Research Centre, Mumbai.
From Local Moment to Mixed-Valence Regime in Ce 1−x Yb x CoIn 5 alloys Carmen Almasan, Kent State University, DMR Ce 1−x Yb x CoIn 5 alloys have.
BASICS OF SEMICONDUCTOR
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Past and Future Insights from Neutron Scattering Collin Broholm * Johns Hopkins University and NIST Center for Neutron Research  Virtues and Limitations.
Theory of the Fano Effect and Quantum Mirage STM Spectroscopy of Magnetic Adatoms on Metallic Surfaces.
Point contact properties of intermetallic compound YbCu (5-x) Al x (x = 1.3 – 1.75) G. PRISTÁŠ, M. REIFFERS Institute of Exp. Physics, Center of Low Temperature.
Breakdown of the Kondo effect at an antiferromagnetic instability Outline HF quantum critical points (QCPs) Kondo breakdown QCP in YbRh 2 Si 2 Superconductivity.
Spatially resolved quasiparticle tunneling spectroscopic studies of cuprate and iron-based high-temperature superconductors Nai-Chang Yeh, California Institute.
Magnetic properties of (III,Mn)As diluted magnetic semiconductors
Chapter 7 in the textbook Introduction and Survey Current density:
Flat Band Nanostructures Vito Scarola
Superconductivity and Superfluidity The Microscopic Origins of Superconductivity The story so far -what do we know about superconductors?: (i) Superconductors.
Qimiao Si Rice University
Kondo Effect Ljubljana, Author: Lara Ulčakar
Atomic Resolution Imaging
Lecture 2 OUTLINE Important quantities
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Electrical Properties of Materials
Continuous Change of Landau Renormalization from Heavy Fermion to Mixed Valence in Ce1-xYbxCoIn5 Zhaofeng Ding, J. Zhang, C. Tan, K. Huang, Lei Shu (Fudan.
Kondo effect Him Hoang
Landau Quantization and Quasiparticle Interference in the
Emergence of superconductivity in the canonical heavy-electron metal YbRh2Si2 by Erwin Schuberth, Marc Tippmann, Lucia Steinke, Stefan Lausberg, Alexander.
Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal by Hiroyuki Inoue, András Gyenis, Zhijun Wang, Jian Li,
by Yoshifumi Tokiwa, Boy Piening, Hirale S. Jeevan, Sergey L
Superconducting topological surface states in the noncentrosymmetric bulk superconductor PbTaSe2 by Syu-You Guan, Peng-Jen Chen, Ming-Wen Chu, Raman Sankar,
by Mark T. Edmonds, James L
Presentation transcript:

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Magnetotransport in CeMIn 5 Scanning Tunneling Microscopy on heavy fermion metals Steffen Wirth MPI for Chemical Physics of Solids, Dresden, Germany Introduction – heavy fermion metal YbRh 2 Si 2 – Scanning Tunneling Microscopy STM / STS on YbRh 2 Si 2 – topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh 2 Si 2 -based materials – other materials: HF superconductors

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction Thanks STM experim.: Stefan Ernst theory, NCA: Stefan Kirchner Frank Steglich Band Structure calculation: Gertrud Zwicknagl materials: Christoph Geibel Cornelius Krellner 115 materials: Joe Thompson, LANL Zach Fisk, UC Irvine Andrea Bianchi, U Montreal

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction Quantum criticality in YbRh 2 Si 2  Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 J mol -1 K -2 )  antiferromagnetic order ≤ 70 mK  quantum critical point AF YbRh 2 Si 2 Custers et al., Nature 424 (2003) 524 Gegenwart et al., NJP 8 (2006) 171 T *T *

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction Quantum criticality in YbRh 2 Si 2  Kondo physics at “high” T among heaviest HF metals (γ ≈ 1.6 J mol -1 K -2 )  antiferromagnetic order ≤ 70 mK  quantum critical point  ~ T  ~ T 2 AF YbRh 2 Si 2 PhotoElectron Spectroscopy de Haas-van Alphen effect Hall effect Paschen et al., Nature 432, 881 (‘04) Friedemann et al., PNAS 107, (2010) Custers et al., Nature 424 (2003) 524 Scanning Tunneling Spectroscopy Ernst et al., Nature 474, 362 (2011) Kondo break-down, energy scale T *  reconstruction of Fermi surface involvement of 4f electrons T *T *

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction to STM and STS V sample tip tunneling current Scanning Tunneling Microscopy

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction to STM and STS - atomic resolution due to exponential dependence of I on tip-sample distance - images: scanning the tip at constant height or constant current - images correspond to planes of constant DOS at E F NbSe 2 12 × 12 nm 2, 380 mK, 0 T V sample tip tunneling current scan Scanning Tunneling Microscopy

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction to STM and STS keep tip at a predefined position (constant x and y) open feedback loop of STM controller (constant z) ramp the applied voltage Scanning Tunneling Spectroscopy tip sample tip sample tip sample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states) EFEF LDOS  local density of states (DOS) V > 0V < 0

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction to STM and STS Scanning Tunneling Spectroscopy tip sample tip sample tip sample thermal equilibrium positive sample bias negative sample bias zero bias: V = 0 (into empty states) (from occupied states) EFEF LDOS V > 0V < 0 dI / dV | V=V   s (eV DC ) ≡ LDOS low bias, “well behaved” tip, T(E,V,d) smooth DC

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Introduction to STM and STS  vibration isolation  UHV, LHe-temperatures  in situ low temperature cleaving

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Heavy fermion materials Introduction – heavy fermion metal YbRh 2 Si 2 – Scanning Tunneling Microscopy STM / STS on YbRh 2 Si 2 – topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh 2 Si 2 -based materials – other materials: HF superconductors

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 STM on YbRh 2 Si 2 18 x 18 nm 2 samples cleaved at T ~ 25 K stable surfaces over several weeks FFT

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 STM on YbRh 2 Si 2 2 x 2 nm 2, height scale 25 pm a = 4.01 Å c = 9.86 Å

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 STM on YbRh 2 Si 2 cleaving: Yb-Si, termination unclear Danzenbächer et al., PRB 75, (2007) 2 x 2 nm 2, height scale 25 pm

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Topography → very likely, a Si-terminated surface  excellent sample quality defect analysis Δz = 60 pm 70 x 70 nm 2

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Analysis of defects → very likely, a Si-terminated surface  excellent sample quality defect analysis YbRh 2 Si 2 Δz = 60 pm 70 x 70 nm 2

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Analysis of defects → very likely, a Si-terminated surface  excellent sample quality defect analysis - Rh on Si site YbRh 2 Si 2 Δz = 60 pm 70 x 70 nm 2

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Analysis of defects → very likely, a Si-terminated surface  excellent sample quality defect analysis - Rh on Si site - Si on Rh site YbRh 2 Si 2 Δz = 60 pm 70 x 70 nm 2

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Analysis of defects → very likely, a Si-terminated surface  tunneling predominantly into conduction band, tunneling into 4f states neglected 70 x 70 nm 2 Δz = 60 pm

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Comparison to chemical analysis  homogeneity range: 40.0 – 40.2 at% Rh  best samples (RRR): Rh excess  topography: 380 excess Rh out of 140,000 atoms → at% WDXS: ± 0.12 at% Rh 150 x 150 nm 2

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 STS on YbRh 2 Si 2 T = 4.6 K observations: zero-bias dip of conductance peaks at − 17, − 27, − 43 mV peak at − 6 mV V (mV) dI / dV (nS)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Crystal field effects  crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006)  J = 7 / 2 Hund’s rule multiplet -43 mV -27 mV -17 mV

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Crystal field effects  crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006) first time that CEF excitations are observed in STS CEF excitations are a true bulk property CEF excitations originate in Yb → yet another indication for Si-terminated surface asymmetry: YbRh 2 Si 2 is a hole system with valency ~2.9  J = 7 / 2 Hund’s rule multiplet -43 mV -27 mV -17 mV

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Crystal field effects  crystal field excitations at 17, 25 and 43 meV INS, Stockert et al., Physica B 378, 157 (2006)  use of particle-hole symmetry  peak energies independent of T -43 mV -27 mV -17 mV

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2  diluted magnetic impurities Jun Kondo ‘63  spin-singlet ground state  strong correlations ( large) Kondo interaction and STS transport electron scattered electron  on-site Kondo effect: screening cloud  modified density of states ρ of the conduction band  local conductivity as measured by STS is changed accordingly

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Tunneling into two channels local density of states:

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Tunneling into two channels  tunneling into - conduction band - 4f quasiparticle states Fano resonance local density of states: Theory: - M. Maltseva et al., PRL 103, (‘09) - J. Figgins, D. Morr, PRL 104, (‘10) - P. Wölfle et al., PRL 105, (‘10) Experiments on URu 2 Si 2 : - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, (‘10)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Tunneling into two channels  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip local density of states: X Theory: - M. Maltseva et al., PRL 103, (‘09) - J. Figgins, D. Morr, PRL 104, (‘10) - P. Wölfle et al., PRL 105, (‘10) Experiments on URu 2 Si 2 : - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, (‘10)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Tunneling into two channels  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip local density of states: multi-level finite-U NCA (S. Kirchner) 4f DOS cal. spectra X Theory: - M. Maltseva et al., PRL 103, (‘09) - J. Figgins, D. Morr, PRL 104, (‘10) - P. Wölfle et al., PRL 105, (‘10) Experiments on URu 2 Si 2 : - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, (‘10) g(V,T )g(V,T )

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Tunneling into two channels  tunneling into - conduction band - 4f quasiparticle states Fano resonance  tunneling exclusively into conduction band covers essence of zero-bias dip local density of states: multi-level finite-U NCA (S. Kirchner) 4f DOS cal. spectra X g(V,T )g(V,T ) Theory: - M. Maltseva et al., PRL 103, (‘09) - J. Figgins, D. Morr, PRL 104, (‘10) - P. Wölfle et al., PRL 105, (‘10) Experiments on URu 2 Si 2 : - A.R. Schmidt et al., Nature 465, 570 (‘10) - P. Aynajian et al., PNAS 107, (‘10)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Zero-bias conductance dip  tunneling predominantly into conduction band  analysis of the depth of the Kondo dip dashed line: logarithmic decay T.A. Costi, PRL 85, 1504 (2000)  good agreement experiment & generalized NCA calculation conductance dip at zero bias rel. depth of dip

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2  criteria: no inflection point within -20 – 0 mV, fulfilled for T ≥ 30 K curves at T ≥ 30 K used as “background”  Gaussian peak Kondo interaction

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2  criteria: no inflection point within -20 – 0 mV, fulfilled for T ≥ 30 K curves at T ≥ 30 K used as “background”  Gaussian peak, suppressed at T ≈ 27 K, from thermopower measurements T KL = 29 K in YbRh 2 Si 2 Köhler et al., PRB 77, (2008) Kondo interaction

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, (2010) CEF

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, (2010) CEF  analysis of peak width rather than peak height or position K. Nagaoka et al., PRL 88, (2002)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Kondo interaction Renormalized Band Calculation; G. Zwicknagl S. Friedemann et al., PRB 82, (2010) CEF  analysis of peak width rather than peak height or position T KL = 30 ± 6 K K. Nagaoka et al., PRL 88, (2002)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Kondo interaction  C = C(YbRh 2 Si 2 )  C(LuRh 2 Si 2 ) T KL = 20 – 30 K ~ ln(T KL / T ) T KL = 24 K O. Trovarelli et al., PRL 85, 626 (2000) T KH ~ 100 K

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2  maximum in ρ(T ), S(T ) at ~ 80 K local Kondo screening Kondo dip → all CEF levels Cornut + Coqblin 1972  upon cooling, 4f e – condense into CEF Kramers doublet ground state → formation of Kondo lattice below ~30 K = T KL of lowest-lying Kramers doublet peak at –6 mV Kondo interaction *

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on YbRh 2 Si 2 Introduction – heavy fermion metal YbRh 2 Si 2 – Scanning Tunneling Microscopy STM / STS on YbRh 2 Si 2 – topography and surface structure – crystal field excitations – hybridization and Kondo effect Perspectives – extending temperature & field range – quasi-particle interference – doped YbRh 2 Si 2 -based materials – other materials: HF superconductors

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Quantum criticality in YbRh 2 Si 2  Kondo physics at “high” T so far: How does the Kondo interaction develop ?  ~ T  ~ T 2 AF YbRh 2 Si 2 B (T) T LFL TNTN T* Custers et al., Nature 424 (2003) 524 Gegenwart et al., Science 315 (2007) 969 *  quantum critical point Kondo break-down, energy scale T *

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives UHV and in situ cleaving tools, preparation chamber, vibration and sound isolation low temperature, magnetic field STM equipment *

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Low(er) temperature STS lower T → smaller width of crossover signatures of Kondo breakdown ?  ~ T  ~ T 2 AF YbRh 2 Si 2 cleaving at low temperatures required

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Spatial dependence of spectroscopy no local dependences of the peak observed, neither at –6 mV nor off the peak 800 x 720 pm 2 topography T = 4.6 K

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Spatial dependence of spectroscopy indication for Si termination tunneling into conduction band spatially coherent state no local dependences of the peak observed, neither at –6 mV nor off the peak T = 4.6 K

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Quasiparticle interference nature of many-body states: FT of STS maps at constant energy successfully applied to cuprate superconductors T. Hanaguri et al., Nature Phys. 3 (´07) 865 Bi 2 Sr 2 CaCu 2 O 8+  K. McElroy et al., Nature 422 (´03) 592 Ca 2-x Na x CuO 2 Cl 2 YbRh 2 Si 2 : tetragonal  Is there a unique solution to FT ? but: 2D systems SC in CeCoIn 5 : d x 2 -y 2 symmetry A. Akbari et al., PRB 84 (11)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Calculation of conductance curves so far: multi-level, finite-U NCA but: level-splitting not included code under development that explicitly takes into account the four levels but: many open parameters NCA not applicable at low temperatures, renormalized band structure calculations at T = 0 other calculation schemes e.g. NRG, quantum Monte Carlo simulation 4f DOS cal. spectra g(V,T )g(V,T )

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Substitution in YbRh 2 Si 2  possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S. Friedemann et al., Nature Phys. 5 (2009) 465 B (T) Custers et al., Nature 424 (´03) 524 Köhler et al., PRB 77 (´08) Lu Yb

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Substitution in YbRh 2 Si 2  possible on each lattice site: - Ge Si: Si-terminated? - Lu Yb: different cleave? A.R. Schmidt et al., Nature 465, 570 diluted Kondo lattice - Co,Ir Rh: energy scales S. Friedemann et al., Nature Phys. 5 (2009) 465 B (T) Custers et al., Nature 424 (´03) 524 Volume

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Phase diagram N.D. Mathur et al., 1998 CePd 2 Si 2  unconventional superconductivity (pairing mechanism, order parameter)  magnetically mediated J. Custers et al., 2003  ~ T  ~ T 2 AF YbRh 2 Si 2 D.M. Broun, 2008 T

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Perspectives Phase diagram of CeIrIn 5 Hall angle  fundamental property, directly related to and hence, charge carrier mobility S. Nair et al., PRL 100 (‘08)

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden STM / STS on CeMIn 5 STS on CeCoIn 5 V = +14 mV I set = 340 pA V mod = Hz TcTc

Scanning Tunneling Microscopy on heavy fermion metals S. Wirth, MPI CPfS Dresden Summary Summary  Topography on YbRh 2 Si 2 : - perfect low-T cleave - Si terminated  Spectroscopy on YbRh 2 Si 2 : - crystalline electric field (CEF) exitations - single-ion Kondo interaction at 80 – 100 K experiment calculations - Kondo lattice coherence below ~30 K  exciting prospects: - lower T → signatures of quantum critical. - substituted materials → energy scales, FT-STS - heavy fermion superconductors