1 Test Runs with the Detector Model LDC01_05Sc II LCFI Physics Meeting February 05, 2008 Talini Pinto Jayawardena Kristian Harder.

Slides:



Advertisements
Similar presentations
Freiburg Seminar, Sept Sascha Caron Finding the Higgs or something else ideas to improve the discovery ideas to improve the discovery potential at.
Advertisements

SiD PFA Status and Calorimeter Performance Ron Cassell (SLAC) SiD Design Study Meeting 11/15/08.
1 AHCAL answers IDAG Erika Garutti On behalf of AHCAL analysis team.
Effects of Tracking Limitations On Jet Mass Resolution Chris Meyer UCSC ILC Simulation Reconstruction Meeting July 3, 2007.
Using  0 mass constraint to improve particle flow ? Graham W. Wilson, Univ. of Kansas, July 27 th 2005 Study prompted by looking at event displays like.
LCFI Collaboration meeting, 8 May 2007Sonja Hillert p. 0 Some input distributions from LC-PHSM most sensitive input variables for the flavour.
ZHH channel: software and detector performances for ILC Michele Faucci Giannelli Fabrizio Salvatore Mike Green, Tao Wu.
Algorithm design for MAPS clustering Bradley Hopkinson / Birmingham Introduction: ● Using LDC01 detector model in Mokka ● MAPS Mokka geometry (Yoshi.
LCFI Collaboration Meeting, RAL, 6 th March 2007Sonja Hillert (Oxford)p. 0 WP 1 – Simulation and Physics Studies Overview of recent progress LCFI Collaboration.
TB & Simulation results Jose E. Garcia & M. Vos. Introduction SCT Week – March 03 Jose E. Garcia TB & Simulation results Simulation results Inner detector.
Michele Faucci Giannelli, Mike Green, Veronique Boisvert, Fabrizio Salvatore, Tao Wu LCWS 08, Chicago, 18 November 2008 Sensitivity to the Higgs self-coupling.
Identification of neutrino oscillations in the MINOS detector Daniel Cole
Michele Faucci Giannelli TILC09, Tsukuba, 18 April 2009 SiW Electromagnetic Calorimeter Testbeam results.
E. Devetak - LCWS t-tbar analysis at SiD Erik Devetak Oxford University LCWS /11/2008 Flavour tagging for ttbar Hadronic ttbar events ID.
CEA-Saclay G. De Lentdecker November 30 st 2011 o G. De Lentdecker Université Libre de Bruxelles Kalman Filter in MarlinTPC.
2007 International Linear Collider Workshop, DESY, 2 nd June 2007Sonja Hillert (Oxford) p. 0 The LCFIVertex package Sonja Hillert (Oxford) on behalf of.
Studies of PFA Fundamentals Ron Cassell – SLAC SiD Workshop Jan. 28, 2008.
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
Status of LCFIVertex K. Ikematsu, A. Miyamoto (KEK) H. Ono (Nippon Dental University) Y. Takubo, K. Yoshida (Tohoku University) T. Suehara, T. Tanabe (University.
E. Devetak – CERN CLIC1 LCFI: vertexing and flavour-tagging Erik Devetak Oxford University CERN-CLIC Meeting 14/05/09 Vertexing Flavour Tagging Charge.
Andreas Morsch, CERN EP/AIP CHEP 2003 Simulation in ALICE Andreas Morsch For the ALICE Offline Project 2003 Conference for Computing in High Energy and.
Monitoring of background events in 2010 run Giuseppe Zito 06/11/2015 PFG/MIG Topical meeting on beam background.
ECFA ILC workshop, Valencia, 9 th November 2006Sonja Hillert (Oxford)p. 0 Overview of the LCFI Vertex Package ILC workshop, Valencia, 6 – 10 November 2006.
LCFIVertex with Jupiter - brief report - S. Uozumi Apr ACFA-sim-j meeting.
LCFI Package and Flavour 3TeV Tomáš Laštovička Institute of Physics AS CR CLIC WG3 Meeting 9/6/2010.
Optimizing the SiD Detector - mainly a calorimeter perspective Andy White SiD Advisory May 5, 2008.
First Look at Data and MC Comparisons for Cedar and Birch ● Comparisons of physics quantities for CC events with permutations of Cedar, Birch, Data and.
Taikan Suehara et al., ILC tokusui meeting, 21 Dec page 1 Status of LCFIPlus Taikan Suehara, Tomohiko Tanabe (ICEPP, U. Tokyo)
Cedar and pre-Daikon Validation ● CC PID parameter based CC sample selections with Birch, Cedar, Carrot and pre-Daikon. ● Cedar validation for use with.
Integration of the ATLAS Tag Database with Data Management and Analysis Components Caitriana Nicholson University of Glasgow 3 rd September 2007 CHEP,
1 Single top in e+jets channel Outline : - Data and MC samples - Overview of the analysis - Loose and topological cuts - MC efficiencies and expected number.
ILC Software and Tools workshop LAL-Orsay, 3 rd May 2007Sonja Hillert (Oxford) p. 0 The LCFIVertex package Sonja Hillert (Oxford) on behalf of the LCFI.
SiD PFA Meeting 27 August Status report on SiD global parameters study and PFA activities at MIT Ray Cowan Peter Fisher 27 August 2009.
Jet Tagging Studies at TeV LC Tomáš Laštovička, University of Oxford Linear Collider Physics/Detector Meeting 14/9/2009 CERN.
Review of Statistical Terms Population Sample Parameter Statistic.
The “Comparator” Atlfast vs. Full Reco Automated Comparison Chris Collins-Tooth 19 th February 2006.
Comparison of different km3 designs using Antares tools Three kinds of detector geometry Incoming muons within TeV energy range Detector efficiency.
TILC08 workshop, Sendai 4 th March 2008Sonja Hillert (Oxford) p. 0 LCFI Vertex Package: Parameter Optimisation Sonja Hillert (Oxford) on behalf of the.
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
Khaled Belkadhi (LLR-Ecole Polytechnique)1 DHCAL Test Beam Results using Full Train Reconstruction Khaled Belkadhi.
1 Status of Tracker Alignment b-tagging Workshop Nhan Tran (JHU) On behalf of the Tracker Alignment Group.
09/06/06Predrag Krstonosic - CALOR061 Particle flow performance and detector optimization.
John Marshall, 1 John Marshall, University of Cambridge LCD-WG2, July
SEARCH FOR DIRECT PRODUCTION OF SUPERSYMMETRIC PAIRS OF TOP QUARKS AT √ S = 8 TEV, WITH ONE LEPTON IN THE FINAL STATE. Juan Pablo Gómez Cardona PhD Candidate.
John Marshall, 1 John Marshall, University of Cambridge LCD WG6 Meeting, February
LCFI physics studies meeting, 7 th December 04Sonja Hillertp. 1 Charge efficiency and leakage rates  purity vs efficiency plots give only part of the.
Mark Dorman UCL/RAL MINOS WITW June 05 An Update on Using QE Events to Estimate the Neutrino Flux and Some Preliminary Data/MC Comparisons for a QE Enriched.
1 LCFIVertex tutorial – Neural Net Tagging Mark Grimes – University of Bristol (Orsay ) On behalf of the LCFI Collaboration.
Calice09 meeting, KNU, Daegu, Korea, February 19 th 2009 p1p1 PFA and digital calorimeter (ILD) Gérald Grenier IPN Lyon/Université Lyon 1 Calice09 meeting.
Michele Faucci Giannelli
Full Sim Status Estel Perez 27 July 2017.
Erik Devetak Oxford University 18/09/2008
Using IP Chi-Square Probability
Comments from MarlinReco users in Asia
slicPandora: slic + pandoraPFANew
Studies with PandoraPFA
Philippe Doublet, LAL Roman Pöschl & François Richard, LAL
Introduction The aim of this talk is to try to get a feeling on the expected degradation of performance of a calibration once we move from MonteCarlo.
Data Analysis in Particle Physics
ILC Software Meeting, Orsay 05/07
Test Beam Measurements october – november, 2016
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Linear Collider Simulation Tools
Mar 2-7 Sendai Satoru Uozumi (Kobe University)
longitudinal shower profile
Search for coincidences and study of cosmic rays spectrum
ZHH: Linear collider Benchmark
ZHH Analysis preliminary results on different detector models
Rotating Spring Problem
° status report analysis details: overview; “where we are”; plans: before finalizing result.. I.Larin 02/13/2009.
Presentation transcript:

1 Test Runs with the Detector Model LDC01_05Sc II LCFI Physics Meeting February 05, 2008 Talini Pinto Jayawardena Kristian Harder

2 Overview  Investigation into the degraded performance with PandoraPFA relative to WolfPFA  Performance analysis of replacement of (some) tracking parameters used with PandoraPFA, with those used with WolfPFA  Effect of removing the CurlKillerProcessor  Performance output analysis with new joint probability values

3 LDC01_05Sc: Performance comparison for changed parameters MySiliconTrackingProcessor WolfPFAPandoraPFA Chi2FitCut20100 NDivisionsInPhiFTD203 OptPrefit40  Some parameters in the PandoraPFA (example) steering file discovered to be different from that of the WolfPFA steering file: MyFullLDCTrackingWolfPFAPandoraPFA CutOnTPCHits3035 ForceSiTPCMerging10 OmegaCutForForcedMerging StoreRefittedSiTracks01 TPCHitToTrackDistance1525

4 LDC01_05Sc: Performance comparison for changed parameters  PandoraPFA run with Tracking parameters obtained from the setup with WolfPFA, and compared with the values from the example PandoraPFA steering file  Results for FullLDCTracking and PandoraPFA  Bold symbols : WolfPFA Tracking parameters  Open symbols : PandoraPFA (example) Tracking parameters

5 PandoraPFA with Wolf parametersPandoraPFA with example parameters Jet Energy Histograms

6 LDC01_05Sc: Performance output without CurlKillerProcessor  Results for FullLDCTracking and PandoraPFA  Bold symbols : No CurlKillerProcessor + parameters from the Wolf setup  Open symbols : CurlKillerProcessor + parameters from the Wolf setup NB: Performance not affected by the removal of the CurlKillerProcessor

7 PandoraPFA with Wolf parameters and no CurlKillerProcessor PandoraPFA with example parameters and with CurlKillerProcessor Jet Energy Histograms NB: No effect on the Jet Energy distribution at first glance

8 LDC01_05Sc: Performance comparison for changed parameters  Bold symbols : Pandora with Tracking parameters from the setup with WolfPFA  Open symbols : Wolf with its original Tracking parameters  Results for FullLDCTracking

9 Conclusions on the degraded performance with PandoraPFA  Flavourtag performance improved when the track parameters were changed to those used with the WolfPFA setup  Removing the CurlKillerProcessor had no further effect on the Flavourtag performance  More detailed investigation required into the effect the changes have on the jet energy distribution and resolution

10 LDC01_05Sc: Effect of new Joint Probability values  Joint Probability values hard-coded in LCFIVertex  New values obtained from the SignificanceFit Processor (Erik Devetak)  Values obtained are for the first 5000 events (of a 10K events sample)  Marlin reconstruction done on the next 5000 events with the new Joint Probability values  Results compared with the original (hard-coded) values for the same 5000 events Parameters for RPhi Joint Probability Original Values New Values Parameters for Z Joint Probability Original Values New Values

11 LDC01_05Sc: Effect of new Joint Probability values  Results for FullLDCTracking and PandoraPFA  Bold symbols : New Joint Probability values  Open symbols : Original Joint Probability values