Derivatives Definition of a Derivative Power Rule Package Rule Product Rule Quotient Rule Exponential Function and Logs Trigonometric Functions Barbara Wong Period 5
Definition of a Derivative The slope of the tangent line to the graph of a function at a given point. Mathematical Formula: f ’ (x) = Lim f (x+h) – f (x) h0 h
Power Rule y= x y’= x -1 Example: f(x) = 8x 3 f '(x) = 24x 2
Package Rule d[a() n ] = na n-1 d dx dx Example: f(x) = 2(x 2 -1) 2 f '(x) = 4(x 2 -1) 1 (x 2 -1)’ = 8x(x 2 -1)
Product Rule d ( ) = d + d dx dx dx ’ + ’ Example: f(x) = 3x e x f '(x) = 3e x + 3xe x = 3e x (x + 1)
Quotient Rule d(/ ) = ddx d dx dx 2 ’ - ’ 2 Example: f (x) = x x 3 f’(x) = (2x x 3 ) – (x 2 + 1) 3x 2 x 6 = 2 x 4 – 3x 4 – 3x 2 = – x 4 – 3x 2 x 6 x 6 = – x 2 – 3 x 6
Rules for Simplifying Logs 1.ln( ) = ln() + ln( ) 2.ln = ln() – ln( ) 3.ln = ln() Examples: 1.ln(2x) = ln(2) + ln(x) 2.ln(x/2)= ln(x) – ln(2) 3.lnx 2 = 2lnx
Rules for Simplifying Natural Logs and Exponentials 1.ln(e ) = 2.e ln = (e x and lnx are inverse functions) Examples: 1. ln(e 2 ) = 2 2. e ln2 = 2
Derivatives of the Logarithm & Exponential Functions 1.f(x) = ln f’(x) = 1 (d) Example: f(x) = ln x f '(x) = 1/x 2.f(x) = e f’(x) = e (d) Example: f(x) = e 3x f '(x) = e 3x 3 = 3e 3x
Derivatives of Trigonometric Functions d(sin) dx = cos d /dx d(cos) dx = -sin d /dx d(tan) dx = sec 2 d /dx d(cot) dx = -csc 2 d /dx d(sec) dx = sec tan d/dx d(csc) dx = -csc cot d/dx