15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos1 Sources of atmospheric electron neutrinos A.D. Morozova, S.I.Sinegovsky 15 th Baikal Summer.

Slides:



Advertisements
Similar presentations
Trigger issues for KM3NeT the large scale underwater neutrino telescope the project objectives design aspects from the KM3NeT TDR trigger issues outlook.
Advertisements

Tau dilepton channel The data sample used in this analysis comprises high-p T inclusive lepton events that contain an electron with E T >20 GeV or a muon.
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
Quark recombination in high energy collisions for different energies Steven Rose Worcester Polytechnic Institute Mentor: Dr. Rainer Fries Texas A&M University.
Counting Cosmic Rays through the passage of matter By Edwin Antillon.
STAR Strangeness production in jets from p+p 200 GeV collisions Anthony Timmins for the STAR Collaboration  Motivation  Analysis  Results  Summary.
P Spring 2003 L12Richard Kass Weak Interactions & Neutral Currents Until the the mid-1970 ’ s all known weak interaction processes could be described.
Sourav Tarafdar Banaras Hindu University For the PHENIX Collaboration Hard Probes 2012 Measurement of electrons from Heavy Quarks at PHENIX.
The GlueX Experiment in Hall-D
Sayfa 1 EP228 Particle Physics Department of Engineering Physics University of Gaziantep Dec 2014 Topic 5 Cosmic Connection Course web page
Constraints of hadronic interaction models from the cosmic muon observations. L.G. Dedenko, A.V. Lukyashin, G.F. Fedorova, T.M. Roganova M.V. Lomonosov.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Identified Particle Ratios at large p T in Au+Au collisions at  s NN = 200 GeV Matthew A. C. Lamont for the STAR Collaboration - Talk Outline - Physics.
From Luigi DiLella, Summer Student Program
Size and Energy Spectra of incident cosmic radiation obtained by the MAKET - ANI surface array on mountain Aragats. (Final results from MAKET-ANI detector)‏
Extending the Bertini Cascade Model to Kaons Dennis H. Wright (SLAC) Monte Carlo April 2005.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
8 th Jan, NuHoRIzons, HRI, Allahabad Atsushi Watanabe (Harish-Chandra Research Institute) In collaboration with Raj Gandhi (HRI) Abhijit Samanta.
Cosmic Rays GNEP Teacher Workshop Steve Shropshire, July 2007.
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
Data collected during the year 2006 by the first 9 strings of IceCube can be used to measure the energy spectrum of the atmospheric muon neutrino flux.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
The muon component in extensive air showers and its relation to hadronic multiparticle production Christine Meurer Johannes Blümer Ralph Engel Andreas.
Charged Kaon Production Yield Studies with Stretcher Sergei Striganov Fermilab Future of Kaon Physics at Fermilab August 21, Fermilab.
Charm Physics Potential at BESIII Kanglin He Jan. 2004, Beijing
NEUTRAL MESON PRODUCTION IN PP AND PB-PB COLLISIONS AT LHC Dmitry Blau, for the ALICE collaboration NRC “Kurchatov Institute” LHC on the March
Study of the Atmospheric Muon and Neutrinos for the IceCube Observatory Ryan Birdsall Paolo Desiati, Patrick Berghaus,
Nucleon Decay Search in the Detector on the Earth’s Surface. Background Estimation. J.Stepaniak Institute for Nuclear Studies Warsaw, Poland FLARE Workshop.
Ralf Averbeck Stony Brook University Hot Quarks 2004 Taos, New Mexico, July 19-24, 2004 for the Collaboration Open Heavy Flavor Measurements with PHENIX.
PHY418 Particle Astrophysics
QCD at Cosmic Energies Erice, Aug 30, 2004 Thomas K. Gaisser Hadronic interactions in modeling atmospheric cascades The atmospheric cascade equation Heavy.
Pheno Symposium, University of Wisconsin-Madison, April 2008John Beacom, The Ohio State University Astroparticle Physics in the LHC Era John Beacom The.
School of Cosmic-ray Astrophysics, Erice, July 4, 2004 Thomas K. Gaisser Role of particle interactions in high-energy astrophysics Uncorrelated fluxes.
DIS Conference, Madison WI, 28 th April 2005Jeff Standage, York University Theoretical Motivations DIS Cross Sections and pQCD The Breit Frame Physics.
QUARKS-2014 Suzdal 7 June 2014 Testing High Energy Cosmic Ray Interaction Models with the Atmospheric Muon Data L.G. Dedenko, G.F. Fedorova, T.M. Roganova.
Single Top Quark Production Mark Palenik Physics 564, Fall 2007.
Study of b quark contributions to non-photonic electron yields by azimuthal angular correlations between non-photonic electrons and hadrons Shingo Sakai.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Atmospheric Neutrinos Phenomenology and Detection p 00 ++  e+e+ e-e- ++  Michelangelo D’Agostino Physics C228 October 18, 2004.
1 Methods of Experimental Particle Physics Alexei Safonov Lecture #9.
Search for diffuse cosmic neutrino fluxes with the ANTARES detector Vladimir Kulikovskiy The ANTARES Collaboration 3-9 August 2014ANTARES diffuse flux.
A. Bertolin on behalf of the H1 and ZEUS collaborations Charm (and beauty) production in DIS at HERA (Sezione di Padova) Outline: HERA, H1 and ZEUS heavy.
Ultra High Energy Cosmic Rays – New Approach A.A.Petrukhin Moscow Engineering Physics Institute C o n t e n t s 1.Problems of UHECR 2.Possible solution.
Workshop on AstroParticle Physics, WAPP 2009 Bose Institute, Darjeeling, December 2009 Extensive Air Showers and Astroparticle Physics Observations and.
31/03/2008Lancaster University1 Ultra-High-Energy Neutrino Astronomy From Simon Bevan University College London.
NEVOD-DECOR experiment: results and future A.A.Petrukhin for Russian-Italian Collaboration Contents MSU, May 16, New method of EAS investigations.
All lepton generation and propagation with MMC Dmitry Chirkin, UCB/LBNL AMANDA meeting, Uppsala, 2004.
On the Prospect of Tau Neutrino Astronomy in GeV Energies and Beyond G.-L. Lin National Chiao-Tung U. Taiwan Moriond 2005.
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
A New Upper Limit for the Tau-Neutrino Magnetic Moment Reinhard Schwienhorst      ee ee
10/29/2007Julia VelkovskaPHY 340a Lecture 4: Last time we talked about deep- inelastic scattering and the evidence of quarks Next time we will talk about.
Toward a  +Jet Measurement in STAR Saskia Mioduszewski, for the STAR Collaboration Texas A&M University 1.
Measurement of the Muon Charge Ratio in Cosmic Ray Events with the CMS Experiment at the LHC S. Marcellini, INFN Bologna – Italy on behalf of the CMS collaboration.
Xenon100 collaboration gives a stringent constraint on spin-independent elastic WIMP-nucleon scattering cross section. Ton-scale detectors for direct detection.
Downgoing Muons in the IceCube experiment: Final presentation for Phys 735, Particle, Prof. Sridhara Dasu L.Gladstone 2008 Dec 3.
Cosmogenic Muon Background
Imaging the Neutrino Universe with AMANDA and IceCube
Muons in IceCube PRELIMINARY
High Energy and Prompt Neutrino Production in the Atmosphere
Direct Measurement of the Atmospheric Muon Spectrum with IceCube
Today’s plan Collect homework QCD leftovers Weak Interaction.
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
Comparison Of High Energy Hadronic Interaction Models
08/27/04 Strategies for the search for prompt muons in the downgoing
Comparison Of High Energy Hadronic Interaction Models
Hadronic Interaction Model Analysis Air Shower Development
Fluxes of atmosperic leptons
Identified Charged Hadron Production
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Presentation transcript:

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos1 Sources of atmospheric electron neutrinos A.D. Morozova, S.I.Sinegovsky 15 th Baikal Summer School on Physics of Elementary Particles and Astrophysics Bolshie Koty, 5-12 July 2015

Anna Morozova, Atmospheric neutrinos2 High energy neutrinos High energy neutrinos arise from weak decays of hadrons produced in reactions: Cosmic rays particles interact with matter (stellar wind, supernova remnant and other substance) Cosmic rays interact with matter and electromagnetic fields near remote objects to generate cosmogenic neutrinos; Interactions of cosmic rays with the Earth's atmosphere are the source of the atmospheric neutrinos or with dense electromagnetic fields near the source through the photo-production of pion:

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos3 Astrophysical neutrinos vs. AN background Most of uncertainties in calculations of the high-energy background are due to differences of hadronic interaction models especially as to the strange particles production (and charmed ones as well). The breakthrough in neutrino astrophysics was the detection of 37 high-energy neutrino-induced events with energies 30 TeV – 2 PeV from astrophysical sources in IceCube experiment – 988 days collection data ( ). Atmospheric neutrinos are a background for astrophysical neutrinos which one need know.

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos4 Motivation The atmospheric flux is one order of magnitude less than the muon neutrino flux, that is comparatively low background for astrophysical neutrinos Semileptonic decays of charged and neutral kaons are the main source of as well as is the spring of significant uncertainties of the calculations because of poor studies of the kaon yield at very high energy At energies above 10 TeV the rare decay mode of the short-lived K 0 -meson,, can contribute significantly to the flux (V.Naumov,hep-ph/ ; T. Sinegovskaya, PhD thesis,1999) Besides, pion-induced K-mesons production (usually ignored),, is also of the interest as a contribution to the flux.

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos5 M ethod of the calculation The calculation is performed on the basis of a method of solving equations of hadron-nuclear cascade, which allows one to take into consideration nonpower energy spectrum of cosmic rays, a violation of the Feynman scaling of particle production cross sections, the growth with energy of the total inelastic cross sections for hadron-nucleus collisions V.А. Naumov, T.S. Sinegovskaya, ЯФ 63 (2000) 2020; A.A. Kochanov, T.S. Sinegovskaya, S.I. Sinegovsky, Astropart. Phys. 30 (2008) 219.

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos6 Models for the cosmic rays spectrum In the calculation we used the following the parameterization of the spectrum and composition of CR: ZS – the model by Zatsepin and Sokolskaya, which describes well the data of direct measurements in the experiment ATIC-2 in the range GeV and gives motivated extrapolation to the region of energies up to 100 PeV where spectrum is reconstructed from extensive air shower measurements HGm - a parameterization by Hillas-Gaisser (also account for the knee of the CR spectrum)

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos7 Sources of electron neutrinos Decay mode Branching ratio (%) Critical energy Life time (с) 5,04890 ГэВ 40,55210 ГэВ 0,07120 ТэВ 1001,03 ГэВ

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos8 Относительные вклады источников электронных нейтрино Relative contributions of the decay modes of electron neutrinos flux

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos9 Zenith-angle enhancement of the neutrino fluxes due to switching on the K-sources

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos10 Zenith-angle enhancement of the neutrino fluxes Зенитно-угловое распределение электронных нейтрино для E=10 TeV

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos11 Contribution to flux due to K-mesons produced in interaction Calculated for model HGm+QGSJET-II-03. Energy, GeVθ=90˚θ =0˚ %1 % %5 % %6 %

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos12 Results In this work, we calculated the contributions to the flux of electron neutrinos from the three-particle semileptonic decay modes of charged and neutral K-mesons produced in extensive air showers generated by cosmic rays It is shown that the decay of short-lived neutral kaon at energies above 100 TeV gives more than 1/3 of the total flux of electron neutrinos Account for the production of K-mesons in the pions- nuclei interactions leads to 5-7 % increased flux in the energy range GeV.

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos13 Thank you!

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos14 Backup slides

Atmospheric spectrum and the diffuse flux of cosmic neitrions observed in IceCube experiment 15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos15

Z(E)-factors

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos17 Главное событие в нейтринной астрофизике последних двух лет - детектирование 37 (87) событий от астрофизических нейтрино высоких энергий в эксперименте IceCube ( ожидалось ~ 15 событий от АМ, АН) Атмосферные нейтрино являются фоном к подобным событиям, и его необходимо знать Наибольшая неопределенность расчета фона атмосферных нейтрино при энергиях выше 200 ТэВ обусловлена вкладом процессов рождения и распада странных частиц и очарованных частиц Астрофизические нейтрино и проблема фона атмосферных нейтрино

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos18 Энергетический спектр недавно измерен в эксперименте IceCube в интервале энергий 80 ГэВ - 20 ТэВ Основные источники - распады каонов и мюонов В генерацию потоков при энергиях выше 10 ТэВ может вносить заметный вклад редкая мода распада K 0 -мезонов (до сих пор не была включена в коды МК ) Учет генерации К-мезонов во взаимодействии пионов с ядрами : Постановка задачи

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos19 Target setting (2) Main sources of the atmospheric at high energies are leptonic and semileptonic decays of kaons charged and neutral kaons At energies above 10 TeV the rare decay mode of the short-lived K 0 -meson,, can contribute significantly to the neutrino flux, (Naumov V., Sinegovskaya T. PhD Thesis,1999) (up to now was not taken into account known codes of the Monte Carlo simulation method A contrubution of K-mesons production in the reaction of pion-nuclei interactions

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos20 Метод расчета Расчет выполнен на основе метода решения уравнений адрон-ядерного каскада, который позволяет учитывать нестепенной характер первичного спектра космических лучей, нарушение скейлинга сечений рождения частиц и рост с энергией полных неупругих сечений адрон-ядерных столкновений. Наумов В.А. Синеговская Т.С. Ядерная физика Т. 63. С A.A. Kochanov, T.S. Sinegovskaya, S.I. Sinegovsky, Astropart. Phys. 30, 219 (2008).

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos21 Параметризация спектра космических лучей В расчете использовались следующие параметризации спектра и состава КЛ: ZS – модель В.И.Зацепина и Н.В.Сокольской, хорошо описывает данные прямых измерений в эксперименте ATIC-2 в интервале ГэВ и дает мотивированную экстраполяцию на область энергий до 100 ПэВ (где спектр восстанавливается на основе измеренний широких атмосферных ливней) HGm – параметризация Хилласа-Гайссера (также учитывающая колено спектра КЛ) V.I. Zatsepin, N.V. Sokolskaya, Astronomy & Astrophys. 458, 1 (2006); Astron. Lett. 33, 25 (2007). T. Gaisser, Astropart. Phys. 24, 801 (2012)

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos22 Модели адрон-ядерных взаимодействий при высоких энергиях QGSJET-II-03 (Quark Gluon String model with JETs) - расширение модели кварк-глюонных струн (QGSM), включающее адронные струи - вклад жестких процессов. SIBYLL 2.1, QGSJET описывают взаимодействие кварков и глюонов как рождение одномерных релятивистских струн (трубои цветного тока) с концами, прикрепленными к валентному кварку (дикварку) из мишени и налетающей частицы; когда расстояние между кварками превышает критическое, струна рвется, образуя пару кварк-антикварк

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos23 А. Морозова, Электронные нейтрино23 Вклады каонов в спектры электронных нейтрино

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos24

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos25 Результаты Рассчитаны вклады в потоки электронных нейтрино от трехчастичных полулептонных мод распада заряженных и нейтральных К-мезонов, рождающихся в широких атмосферных ливнях, порожденных космическими лучами Показано, что распад короткоживущего нейтрального каона при энергиях выше 100 ТэВ дает более 1/3 потока атмосферных электронных нейтрино (без учета прямых нейтрино) Учет генерации К-мезонов при взаимодействии пионов с ядрами, приводит к увеличению потока на (5-7) % в интервале энергий ГэВ.

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos26 Адронный каскад в атмосфере

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos27 Регистрация мюонных нейтрино (СС)

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos28 А. Морозова, Электронные нейтрино28 Рассеяние нейтрино на нуклонах Процессы с нейтральными токами (NC): Процессы с заряженными токами (СС):

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos29 ЧастицаВремя жизни(s)Масса(MeV) 493,6 497,6 105,6

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos30 ЧастицаМода распадаВероятность распада(%) Критическая энергия 5,04890 ГэВ 40,55210 ГэВ 0,07120 ТэВ 100 1,03 ГэВ Источники электронных нейтрино

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos31 Энергетические спектры атмосферных и астрофизических нейтрино (иллюстрация)

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos32 Critical energy for a meson decay in the Earth’s atmosphere An illustration

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos33 The energy spectra of atmospheric and astrophysical neutrinos (illustration)

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos34 The contributions of kaon spectra in electron neutrinos

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos35 Motivation (Target setting) Main sources of the atmospheric at high energies is semileptonic decays of kaons charged and neutral kaons At energies above 10 TeV the rare decay mode of the short-lived K 0 -meson,, can contribute significantly to the neutrino flux (V.Naumov,hep-ph/ ; T. Sinegovskaya, PhD thesis,1999) A contrubution of K-mesons production in the reaction of pion-nuclei interactions It is also of the interest how much the reaction of pion- nuclei interactions contrubutes to the flux

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos36 Astrophysical neutrinos and AN background The main event in neutrino astrophysics at last two years is the IceCube detection of 37 high-energy neutrino events from astrophysical sources (expected ~ 15 events from the AM, AN) Atmospheric neutrinos are a background for astrophysical neutrinos which one needs know Most uncertainties in the calculations of the high- energy background are due to difference in hadronic interaction models predictions of the cross sections of the strange particles production

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos37 Motivation Main sources of the atmospheric at high energies are semileptonic decays of kaons charged and neutral kaons At energies above 10 TeV the rare decay mode of the short-lived K 0 -meson,, can contribute significantly to the neutrino flux (V.Naumov,hep-ph/ ; T. Sinegovskaya, PhD thesis,1999) It is also of the interest, how much the pion-nuclei interactions contrbutes to the flux

15th Baikal Summer SchoolAnna Morozova, Atmospheric neutrinos38 Models of hadron-nuclear interactions at high energies QGSJET-II-03 (Quark Gluon String model with JETs) – the extension of the model of quark-gluon strings (MQGS), including hadron jets - the contribution of hard processes. SIBYLL describe the birth of quarks and gluons through a one-dimensional relativistic string (tube current color) with the ends attached to the valence quark (diquark) from the target and incident particle; when the distance between the quarks exceeds a critical value, the string breaks, giving rise to a pair of quark-antiquark. SIBYLL the model with the inclusion of mini-jets (semi- hardd processes) is based on approximates QCD and soft and hard processes