19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol.

Slides:



Advertisements
Similar presentations
Electrochemistry Applications of Redox.
Advertisements

Electrochemistry Chapter 19
Chapter 20: Electrochemistry
1 Electrochemistry Chapter 18, Electrochemical processes are oxidation-reduction reactions in which: the energy released by a spontaneous reaction.
19.2 Galvanic Cells 19.3 Standard Reduction Potentials 19.4 Spontaneity of Redox Reactions 19.5 The Effect of Concentration on Emf 19.8 Electrolysis Chapter.
Chapter 21: Electrochemistry
Chapter 20 Electrochemistry.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
JF Basic Chemistry Tutorial : Electrochemistry
Predicting Spontaneous Reactions
ELECTROCHEMISTRY REDOX REVISITED! 24-Nov-97Electrochemistry (Ch. 21) & Phosphorus and Sulfur (ch 22)1.
Section 18.1 Electron Transfer Reactions 1.To learn about metal-nonmetal oxidation–reduction reactions 2.To learn to assign oxidation states Objectives.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Redox Reactions and Electrochemistry Chapter 19. Applications of Oxidation-Reduction Reactions.
Electrochemistry is the chemistry of reactions which involve electron transfer. In spontaneous reactions electrons are released with energy which can.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry
Electrochemistry Chapter 17.
Calculation of the standard emf of an electrochemical cell The procedure is simple: 1.Arrange the two half reactions placing the one with.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Electrochemistry Chapter 19. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
CHEM 163 Chapter 21 Spring minute review What is a redox reaction? 2.
Electrical and Chemical Energy Interconversion
Oxidation-Reduction Reactions Chapter 4 and 18. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- _______ half-reaction (____ e - ) ______________________.
Electrochemistry Chapter 3. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Redox Reactions & Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Redox Reactions and Electrochemistry Chapter 19. Voltaic Cells In spontaneous oxidation-reduction (redox) reactions, electrons are transferred and energy.
Copyright©2000 by Houghton Mifflin Company. All rights reserved. 1 Electrochemistry The study of the interchange of chemical and electrical energy.
Electrochemistry Chapter 5. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Cell EMF Eocell = Eored(cathode) - Eored(anode)
Electrochemistry Chapter 19 Electron Transfer Reactions Electron transfer reactions are oxidation- reduction or redox reactions. Results in the generation.
Prentice-Hall © 2007 General Chemistry: Chapter 20 Slide 1 of 54 Juana Mendenhall, Ph.D. Assistant Professor Lecture 4 March 22 Chapter 20: Electrochemistry.
Electrochemistry. 2Mg (s) + O 2 (g) 2MgO (s) 2Mg 2Mg e - O 2 + 4e - 2O 2- Oxidation half-reaction (lose e - ) Reduction half-reaction (gain e -
Redox Reactions and Electrochemistry Chapter 19. Cell Potentials E cell  = E red  (cathode) − E red  (anode) = V − (−0.76 V) = V.
ELECTROCHEMISTRY CHARGE (Q) – A property of matter which causes it to experience the electromagnetic force COULOMB (C) – The quantity of charge equal to.
Electrochemistry Part Four. CHEMICAL CHANGE  ELECTRIC CURRENT To obtain a useful current, we separate the oxidizing and reducing agents so that electron.
Chapter There is an important change in how students will get their AP scores. This July, AP scores will only be available online. They will.
© 2015 Pearson Education, Inc. Chapter 20 Electrochemistry James F. Kirby Quinnipiac University Hamden, CT Lecture Presentation.
Electrochemistry Chapter 19 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Electrochemistry Chapter 18 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Electrochemistry Chapter 18. Electrochemistry is the branch of chemistry that deals with the interconversion of electrical energy and chemical energy.
Electrochemistry Terminology  Oxidation  Oxidation – A process in which an element attains a more positive oxidation state Na(s)  Na + + e -  Reduction.
Electrochemistry.
Chapter 20 Electrochemistry
Chapter 13: Electrochemistry
Electrochemistry Chapter 19.
Dr. Aisha Moubaraki CHEM 202
Redox Reactions and Electrochemistry
Oxidation-Reduction Reactions
Electrochemical cells
Electrochemistry Chapter 18
Electrochemistry Chapter 19
Chapter 19 Electrochemistry Semester 1/2009 Ref: 19.2 Galvanic Cells
Chapter 20 Electrochemistry
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Chapter 20 Electrochemistry
Electrochemistry.
Electrochemistry Chapter 19
Electrochemistry Chapter 19
Presentation transcript:

19.4 Spontaneity of Redox Reactions  G = -nFE cell  G 0 = -nFE cell 0 n = number of moles of electrons in reaction F = 96,500 J V mol = 96,500 C/mol  G 0 = -RT ln K = -nFE cell 0 E cell 0 = RT nF ln K (8.314 J/K mol)(298 K) n (96,500 J/V mol) ln K = = V n ln K E cell 0 = V n log K E cell 0 F (Faraday constant)= electrical charge contained in 1 mole of electrons 1 F = 96,485.3 coulombs or 96,500 coulombs or 96,500 J/V mol e - ∆G = change in free energy; max. amount of work that can be obtained K = equlibrium constant of a redox reaction

Spontaneity of Redox Reactions 19.4

2e - + Fe 2+ Fe 2Ag 2Ag + + 2e - Oxidation: Reduction: What is the equilibrium constant for the following reaction at 25 0 C? Fe 2+ (aq) + 2Ag (s) Fe (s) + 2Ag + (aq) = V n ln K E cell E 0 = – (0.80) E 0 = V V x nE0E0 cell ln K = n = V x 2x V ln K = K = 1.23 x E 0 = E Fe /Fe – E Ag /Ag K = e -96.5

The Effect of Concentration on Cell Emf  G =  G 0 + RT ln Q  G = -nFE  G 0 = -nFE 0 -nFE = -nFE 0 + RT ln Q E = E 0 - ln Q RT nF Nernst equation At V n ln Q E 0 E = V n log Q E 0 E = Q is the reaction quotient

Will the following reaction occur spontaneously at 25 0 C if [Fe 2+ ] = 0.60 M and [Cd 2+ ] = M? Fe 2+ (aq) + Cd (s) Fe (s) + Cd 2+ (aq) 2e - + Fe 2+ 2Fe Cd Cd e - Oxidation: Reduction: n = 2 E 0 = – (-0.40) E 0 = V E 0 = E Fe /Fe – E Cd /Cd V n ln Q E 0 E = V 2 ln VE = E = E > 0Spontaneous 19.5

Batteries 19.6 Leclanché cell Dry cell Zn (s) Zn 2+ (aq) + 2e - Anode: Cathode: 2NH 4 (aq) + 2MnO 2 (s) + 2e - Mn 2 O 3 (s) + 2NH 3 (aq) + H 2 O (l) + Zn (s) + 2NH 4 (aq) + 2MnO 2 (s) Zn 2+ (aq) + 2NH 3 (aq) + H 2 O (l) + Mn 2 O 3 (s)

Batteries Zn(Hg) + 2OH - (aq) ZnO (s) + H 2 O (l) + 2e - Anode: Cathode: HgO (s) + H 2 O (l) + 2e - Hg (l) + 2OH - (aq) Zn(Hg) + HgO (s) ZnO (s) + Hg (l) Mercury Battery 19.6

Batteries 19.6 Anode: Cathode: Lead storage battery PbO 2 (s) + 4H + (aq) + SO 2- (aq) + 2e - PbSO 4 (s) + 2H 2 O (l) 4 Pb (s) + SO 2- (aq) PbSO 4 (s) + 2e - 4 Pb (s) + PbO 2 (s) + 4H + (aq) + 2SO 2- (aq) 2PbSO 4 (s) + 2H 2 O (l) 4

Batteries 19.6 Solid State Lithium Battery

Batteries 19.6 A fuel cell is an electrochemical cell that requires a continuous supply of reactants to keep functioning Anode: Cathode: O 2 (g) + 2H 2 O (l) + 4e - 4OH - (aq) 2H 2 (g) + 4OH - (aq) 4H 2 O (l) + 4e - 2H 2 (g) + O 2 (g) 2H 2 O (l)

Corrosion 19.7

Cathodic Protection of an Iron Storage Tank 19.7

19.8 Electrolysis is the process in which electrical energy is used to cause a nonspontaneous chemical reaction to occur.

Electrolysis of Water 19.8

Electrolysis and Mass Changes charge (C) = current (A) x time (s) 1 mole e - = 96,500 C 19.8

How much Ca will be produced in an electrolytic cell of molten CaCl 2 if a current of A is passed through the cell for 1.5 hours? Anode: Cathode: Ca 2+ (l) + 2e - Ca (s) 2Cl - (l) Cl 2 (g) + 2e - Ca 2+ (l) + 2Cl - (l) Ca (s) + Cl 2 (g) 2 mole e - = 1 mole Ca mol Ca = C s x 1.5 hr x 3600 s hr96,500 C 1 mol e - x 2 mol e - 1 mol Ca x = mol Ca = 0.50 g Ca 19.8

Chemistry In Action: Dental Filling Discomfort Hg 2 /Ag 2 Hg V 2+ Sn /Ag 3 Sn V 2+ Sn /Ag 3 Sn V 2+