Tracking quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects May 2006 workshop PNC – IPNL Lyon In collaboration.

Slides:



Advertisements
Similar presentations
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Advertisements

CMB but also Dark Energy Carlo Baccigalupi, Francesca Perrotta.
CMB lensing and cosmic acceleration Viviana Acquaviva SISSA, Trieste.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Cosmology Zhaoming Ma July 25, The standard model - not the one you’re thinking  Smooth, expanding universe (big bang).  General relativity controls.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
Cosmology with Galaxy Clusters Princeton University Zoltán Haiman Dark Energy Workshop, Chicago, 14 December 2001 Collaborators: Joe Mohr (Illinois) Gil.
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Weak Gravitational Lensing and Cluster Counts Alexandre Refregier (CEA Saclay) Collaborators: Jason Rhodes (Caltech) Richard Massey (Cambridge) David Bacon.
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Ludovic Van Waerbeke Department of Physics and Astronomy University of British Columbia A (very short) introduction to E/B modes Measurement and high order.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
Large distance modification of gravity and dark energy
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
XXIIIrd IAP Colloquium, July 2nd 2007, Paris Cosmic shear using Canada-France-Hawaii Telescope Legacy Survey (Wide) Liping Fu Institut d’Astrophysique.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
XXIII Colloquium IAP July 2007 Extended quintessence by cosmic shear Carlo Schimd DAPNIA/SPP, CEA Saclay  LAM Marseille.
Adam Amara, Thomas Kitching, Anais Rassat, Alexandre Refregier.
Cosmic shear Henk Hoekstra Department of Physics and Astronomy University of Victoria Current status and prospects.
Yanchuan Cai ( 蔡彦川 ) Shaun Cole, Adrian Jenkins, Carlos Frenk Institute for Computational Cosmology Durham University May 31, 2008, NDHU, Taiwan ISW Cross-Correlation.
CMB as a dark energy probe Carlo Baccigalupi. Outline  Fighting against a cosmological constant  Parametrizing cosmic acceleration  The CMB role in.
Cosmology with Gravitaional Lensing
Observational constraints and cosmological parameters Antony Lewis Institute of Astronomy, Cambridge
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects July 2006, Barcelona IRGAC 2006 In collaboration.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
Dark Energy and Cosmic Sound Daniel Eisenstein Steward Observatory Eisenstein 2003 (astro-ph/ ) Seo & Eisenstein, ApJ, 598, 720 (2003) Blake & Glazebrook.
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
3rd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry NTHU & NTU, Dec 27—31, 2012 Likelihood of the Matter Power Spectrum.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Weak Lensing Alexandre Refregier (CEA/Saclay) Collaborators: Richard Massey (Cambridge), Tzu-Ching Chang (Columbia), David Bacon (Edinburgh), Jason Rhodes.
Complementary Probes of Dark Energy Josh Frieman Snowmass 2001.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Dynamical & Resolution Trajectories for Inflation then & now Dick Bond Inflation Now 1+w(a)=  f(a/a  eq ) to 3 (1+q)/2 ~ 1 good e-fold. Only ~2 parameters.
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
Brenna Flaugher for the DES Collaboration; DPF Meeting August 27, 2004 Riverside,CA Fermilab, U Illinois, U Chicago, LBNL, CTIO/NOAO 1 Dark Energy and.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Investigating dark energy with CMB lensing Viviana Acquaviva, SISSA, Trieste Lensing collaborators in SISSA: C. Baccigalupi, S. Leach, F. Perrotta, F.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
Combining Lensing with SNIa and CMB Sampling the Posterior Martin Kilbinger IAP Paris Martin Kilbinger IAP Paris Toronto, 13 June 2008 Upcoming lensing.
Dark Energy: The Observational Challenge David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Mapping the Mass with Galaxy Redshift-Distance Surveys Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK “Mapping the Mass”: Birmingham,
Cheng Zhao Supervisor: Charling Tao
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
The HORIZON Quintessential Simulations A.Füzfa 1,2, J.-M. Alimi 2, V. Boucher 3, F. Roy 2 1 Chargé de recherches F.N.R.S., University of Namur, Belgium.
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
Cosmology with gravitational lensing
Princeton University & APC
Complementarity of Dark Energy Probes
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Measurements of Cosmological Parameters
Presentation transcript:

Tracking quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects May 2006 workshop PNC – IPNL Lyon In collaboration with: I.Tereno, J.-P.Uzan, Y.Mellier, (IAP), L.vanWaerbeke (British Columbia U.),... Carlo Schimd DAPNIA / CEA Saclay & IAP Based on: astro-ph/

Dark energy: parametrization.vs. field theory inspired {baryons, , } + DM + GR {baryons, , } + DM + GR alone cannot account for the cosmological dynamics seen by CMB + LSS + SNe +...    GR : not valid anymore? Other “matter” fields? Cosmological constant? Dark energy Dark energy  H(z)-H r+m+GR (z) 1/0 approach: 1/0 approach: parameterization of w(z)  departures from  CDM limitation in redshift ? pivot redshift z p : observable/dataset dependent Not adapted for combining low-z and high-z observables and/or several datasets parameters  physics # p.: limitation to likelihood computation     perturbations: how ? Fitted T(k) Which class ?  Physics-inspired approach:  high-energy physics ?!  w : full redshift range  small # p.  perturbations: consistently accounted for Uzan, Aghanim, Mellier (2004); Uzan, astro-ph/

scalar field quintessence: models CMB SNe, WL, n(z) Inverse power law (Ratra-Peebles): » + SUGRA corr. :    1 p.  SUGRA by-product: w(z) and w’(z) at whatever pivot redshift (z p )  z p = 0z p = 0.5 w w’

quintessence by cosmic shear  angular distance   angular distance  q(z); 3D  2D projection  growth factor   growth factor  amplitude of 3D L/NL power spectrum   amplitude + shape of 2D spectra with respect to , quintessence modifies 2pts statistics z=1 10% 20% K = 0 cosmic shear = weak lensing by LSS weak lensing by LSS obs gal   statistics, e.g. 

non-linear regime  N-body:  N-body:...  mappings:  mappings: stable clustering, halo model, etc.: NL P m (k,z) = f [ L P m (k,z)] normalization to high-z (CMB): ...normalization to high-z (CMB): the modes k enter in non-linear regime (  (k)  1 ) at different time  3D non-linear power spectrum is modified  2D shear power spectrum is modified by k = / S K (z) no more  ,but incertitude on TT-CMB Cl’s  e.g. Peacock & Dodds (1996) Smith et al. (2003)  Ansatz:  Ansatz:  c, bias, c, etc. not so much dependent on cosmology  at every z we can use them, provided we use the correct linear growth factor (defining the onset of the NL regime)... calibrated with  CDM N-body sim, 5-10% agreement Huterer & Takada (2005) Q: Q: dependence of 3D NL power spectrum on w Q ? McDonald, Trac, Contaldi (2005)

pipeline ** Riazuelo & Uzan (2002) C.S., Uzan & Riazuelo (2004) * They include larger framework: scalar-tensor theories of gravitation / extended Q models * CMB can be taken into account at no cost  Q models:  Q models: inverse power law with/without SUGRA corrections  (restricted) parameter space:  Q, , n s, z source  ; marginalization over z source ** * * *

dataset  CMB:  CMB: TT anisotropy WMAP-1yr  initial conditions/  SNe:  SNe: “goldset”  cosmic shear:  cosmic shear: VIRMOS-Descart + CFHTLS deep VanWaerbeke, Mellier, Hoekstra (2004) Semboloni et al. (2005) + CFHTLS wide/22deg2 & 170deg2 (synth)  0.92, 1.0, 0.76 n gal  15, 22, 20 /arcmin 2 area  8.5, 2.2, 22(170) deg 2 I AB  24.5, 26, 26 wl observables: wl observables: top-hat variance; aperture mass variance  Riess et al. (2004) cosmic shear: cosmic shear: by wide-field imager/DUNE-like satellite mission  Hoekstra et al. (2005) normalization

cosmic shear data*: effects of L-NL mapping Ratra-Peebles SUGRA * Joint VIRMOS-Descart + CFHTLS deep + CFHTLS wide/22deg2 analysis Peacock & Dodds (1996) Smith et al. (2003) Top-hat shear variance   Peacock & Dodds Smith et al.  

wide survey : Q - geometrical effects (RP) Ratra-Peebles Peacock & Dodds (1996) real data CFHTLS wide/22deg2 (real data) synth CFHTLS wide/170deg2 (synth)   top-hat top-hat variance aperture mass variance > 20 arcmin only scales > 20 arcmin synth CFHTLS wide/170deg2 (synth) top-hat top-hat variance

wide survey : Q - geometrical effects (SUGRA) SUGRA Peacock & Dodds (1996) real data CFHTLS wide/22deg2 (real data) synth CFHTLS wide/170deg2 (synth)   top-hat top-hat variance aperture mass variance > 20 arcmin only scales > 20 arcmin synth CFHTLS wide/170deg2 (synth) top-hat top-hat variance

cosmic shear alone : summary  Two classes of cosmological parameters: other parameters: other parameters: sensible to L-NL mapping Q parameters: Q parameters: not sensible to linear-to-nonlinear mapping  This conclusions holds for both Ratra-Peebles and SUGRA models real data (VIRMOS-Descart + CFHTLS deep + CFHTLS wide/22deg2)  synthetic data (CFHTLS wide/170deg2)   Confirmation of results based on real data joint analysis  Based on top-hat shear variance measurements  Agreement top-hat shear variance – aperture mass variance Compatible with  CDM (  =0), towards n s =0.95 (like WMAP3!)   Analysis of wide scale  reducing the non-linear contamination  confirming Simpson & Bridle (2005)

cosmic shear + SNe + CMB: Q equation of state Ratra-PeeblesSUGRA (n s,z s ): marginalized ; all other parameters: fixed SNe: confirmed literature TT-CMB: rejection from first peak (analytical (Doran et al. 2000) & numerical)  Mass scale M: indicative Cosmic shear Cosmic shear (real data only): RP: RP: strong degeneracy with SNe SUGRA: SUGRA: 1) beware of systematics! (wl: calibration when combining datasets) 2) limit case: prefectly known/excluded Q model (weakly  -dependece) Van Waerbeke et al. (2006)

cosmic shear & CMB: variance on 8h -1 Mpc ( 8 ) contours follow  8 degeneracy WMAP3 – weak lensing: WMAP3 – weak lensing: stress {h,  reion,normalization,  q } Ratra-Peebles SUGRA Spergel et al  Check normalization procedure  Check calibration of datasets  Deviations from  CDM ?

a remark on constant w z de z acc  de /  m = 0.6/0.4 Spergel et al Hoekstra et al Astier et al  w = const

Q by cosmic shear: Fisher matrix analysis CFHTLSwide/170  SNAP Like previous data analysis: Like previous data analysis: all but ( ,  q,n s ) fixed, z s marginalized   SNAP  DUNE CFHTLSwide/170 Adding a parameter: Adding a parameter: Like upper plots but  reion marginalized  size, orientation 

conclusions & prospects  quintessence at low-z  quintessence at low-z by SNe + cosmic shear, using high-z informations (TT-CMB/Cl normalization)   CDM dynamical models of DE (not parameterization):  CDM wide field surveys  wide field surveys are needed  DUNE, LSST data for the first time cosmic shear data to this task  improvement: improvement: bigger parameter space  1.  1. combining also CMB data (high-z effects of DE) +... ; MCMC analysis; deviation from GR, e.g. EQ  w Q < -1  NL regime:caveat  NL regime: L-NL mappings (caveat) Martin, C.S., Uzan (2005) some parameters (n S ) are sensible to L-NL mappings (  integrated effect ?), Q parameters feel only geometry  Tereno et al. (2005) deep surveys  deep surveys help to exploit the linear regime  SKA Schneider (1999); Chang, Réfrégier, Helfand (2004)  consistent joint analysis of high-z (CMB) and low-z (cosmic shear, Sne,...) observables  no stress between datasets; no pivot redshift analysisseveralparameters analysis of realistic (=dynamical) models of DE using several parameters other techniques other techniques: cross-correlations (ISW), 3pts functions, tomography  Work in progress: pipeline: pipeline: Boltzmann code + lensing code + data analysis by grid method: in collaboration with: I.Tereno, Y.Mellier, J.-P. Uzan, R. Lehoucq, A. Réfrégier & DUNE team    

Thank you

Q by cosmic shear: Fisher matrix analysis All but ( ,  q ) parameters: fixed  SNe “goldset” CFHTLS wide: CMB WMAP 1yr A = 170 deg 2 Ratra-PeeblesSUGRA n gal = 20/arcmin 2 DUNE-like: A= deg 2 n gal = 35/arcmin 2