Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects July 2006, Barcelona IRGAC 2006 In collaboration.

Slides:



Advertisements
Similar presentations
Current Observational Constraints on Dark Energy Chicago, December 2001 Wendy Freedman Carnegie Observatories, Pasadena CA.
Advertisements

P ROBING SIGNATURES OF MODIFIED GRAVITY MODELS OF DARK ENERGY Shinji Tsujikawa (Tokyo University of Science)
CMB but also Dark Energy Carlo Baccigalupi, Francesca Perrotta.
CMB lensing and cosmic acceleration Viviana Acquaviva SISSA, Trieste.
Non-linear matter power spectrum to 1% accuracy between dynamical dark energy models Matt Francis University of Sydney Geraint Lewis (University of Sydney)
Christian Wagner - September Potsdam Nonlinear Power Spectrum Emulator Christian Wagner in collaboration with Katrin Heitmann, Salman Habib,
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Cosmology Zhaoming Ma July 25, The standard model - not the one you’re thinking  Smooth, expanding universe (big bang).  General relativity controls.
Falsifying Paradigms for Cosmic Acceleration Michael Mortonson Kavli Institute for Cosmological Physics University of Chicago January 22, 2009.
Complementary Probes ofDark Energy Complementary Probes of Dark Energy Eric Linder Berkeley Lab.
Dark Energy with 3D Cosmic Shear Dark Energy with 3D Cosmic Shear Alan Heavens Institute for Astronomy University of Edinburgh UK with Tom Kitching, Patricia.
Dark Energy J. Frieman: Overview 30 A. Kim: Supernovae 30 B. Jain: Weak Lensing 30 M. White: Baryon Acoustic Oscillations 30 P5, SLAC, Feb. 22, 2008.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Statistics of the Weak-lensing Convergence Field Sheng Wang Brookhaven National Laboratory Columbia University Collaborators: Zoltán Haiman, Morgan May,
Weak Gravitational Lensing and Cluster Counts Alexandre Refregier (CEA Saclay) Collaborators: Jason Rhodes (Caltech) Richard Massey (Cambridge) David Bacon.
Weak Gravitational Lensing by Large-Scale Structure Alexandre Refregier (Cambridge) Collaborators: Richard Ellis (Caltech) David Bacon (Cambridge) Richard.
Ludovic Van Waerbeke Department of Physics and Astronomy University of British Columbia A (very short) introduction to E/B modes Measurement and high order.
Weak Lensing 3 Tom Kitching. Introduction Scope of the lecture Power Spectra of weak lensing Statistics.
The Science Case for the Dark Energy Survey James Annis For the DES Collaboration.
Cosmological Tests using Redshift Space Clustering in BOSS DR11 (Y. -S. Song, C. G. Sabiu, T. Okumura, M. Oh, E. V. Linder) following Cosmological Constraints.
Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni Martin Kilbinger Andisheh Mahdavi.
Cosmic shear results from CFHTLS Henk Hoekstra Ludo van Waerbeke Catherine Heymans Mike Hudson Laura Parker Yannick Mellier Liping Fu Elisabetta Semboloni.
Large distance modification of gravity and dark energy
Modern State of Cosmology V.N. Lukash Astro Space Centre of Lebedev Physics Institute Cherenkov Conference-2004.
Dark Energy The first Surprise in the era of precision cosmology?
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
AST-IHEP-CPPM-DarkEnergy: Determination of cosmological parameters Scientific Goal: Adress open questions of fundamental cosmology: dark matter/dark energy.
XXIIIrd IAP Colloquium, July 2nd 2007, Paris Cosmic shear using Canada-France-Hawaii Telescope Legacy Survey (Wide) Liping Fu Institut d’Astrophysique.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
Cosmological studies with Weak Lensing Peak statistics Zuhui Fan Dept. of Astronomy, Peking University.
Observational test of modified gravity models with future imaging surveys Kazuhiro Yamamoto (Hiroshima U.) Edinburgh Oct K.Y. , Bassett, Nichol,
XXIII Colloquium IAP July 2007 Extended quintessence by cosmic shear Carlo Schimd DAPNIA/SPP, CEA Saclay  LAM Marseille.
Cosmic shear Henk Hoekstra Department of Physics and Astronomy University of Victoria Current status and prospects.
Yanchuan Cai ( 蔡彦川 ) Shaun Cole, Adrian Jenkins, Carlos Frenk Institute for Computational Cosmology Durham University May 31, 2008, NDHU, Taiwan ISW Cross-Correlation.
CMB as a dark energy probe Carlo Baccigalupi. Outline  Fighting against a cosmological constant  Parametrizing cosmic acceleration  The CMB role in.
Cosmology with Gravitaional Lensing
Michael Doran Institute for Theoretical Physics Universität Heidelberg Time Evolution of Dark Energy (if any …)
Refining Photometric Redshift Distributions with Cross-Correlations Alexia Schulz Institute for Advanced Study Collaborators: Martin White.
Tracking quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects May 2006 workshop PNC – IPNL Lyon In collaboration.
 Acceleration of Universe  Background level  Evolution of expansion: H(a), w(a)  degeneracy: DE & MG  Perturbation level  Evolution of inhomogeneity:
BAOs SDSS, DES, WFMOS teams (Bob Nichol, ICG Portsmouth)
23 Sep The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun Peking Univ./ CPPM.
Cosmic shear and intrinsic alignments Rachel Mandelbaum April 2, 2007 Collaborators: Christopher Hirata (IAS), Mustapha Ishak (UT Dallas), Uros Seljak.
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey L.Sun.
Latest Results from LSS & BAO Observations Will Percival University of Portsmouth StSci Spring Symposium: A Decade of Dark Energy, May 7 th 2008.
Weak Lensing Alexandre Refregier (CEA/Saclay) Collaborators: Richard Massey (Cambridge), Tzu-Ching Chang (Columbia), David Bacon (Edinburgh), Jason Rhodes.
Complementary Probes of Dark Energy Josh Frieman Snowmass 2001.
Probing Cosmology with Weak Lensing Effects Zuhui Fan Dept. of Astronomy, Peking University.
Jochen Weller XLI Recontres de Moriond March, 18-25, 2006 Constraining Inverse Curvature Gravity with Supernovae O. Mena, J. Santiago and JW PRL, 96, ,
Dark Energy and baryon oscillations Domenico Sapone Université de Genève, Département de Physique théorique In collaboration with: Luca Amendola (INAF,
Future observational prospects for dark energy Roberto Trotta Oxford Astrophysics & Royal Astronomical Society.
Cosmological Weak Lensing With SKA in the Planck era Y. Mellier SKA, IAP, October 27, 2006.
L. Perivolaropoulos Department of Physics University of Ioannina Open page.
Probing Dark Energy with Cosmological Observations Fan, Zuhui ( 范祖辉 ) Dept. of Astronomy Peking University.
Investigating dark energy with CMB lensing Viviana Acquaviva, SISSA, Trieste Lensing collaborators in SISSA: C. Baccigalupi, S. Leach, F. Perrotta, F.
Probing dark matter halos at redshifts z=[1,3] with lensing magnification L. Van Waerbeke With H. Hildebrandt (Leiden) J. Ford (UBC) M. Milkeraitis (UBC)
Combining Lensing with SNIa and CMB Sampling the Posterior Martin Kilbinger IAP Paris Martin Kilbinger IAP Paris Toronto, 13 June 2008 Upcoming lensing.
COSMIC MAGNIFICATION the other weak lensing signal Jes Ford UBC graduate student In collaboration with: Ludovic Van Waerbeke COSMOS 2010 Jes Ford Jason.
Dark Energy: The Observational Challenge David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
Mapping the Mass with Galaxy Redshift-Distance Surveys Martin Hendry, Dept of Physics and Astronomy University of Glasgow, UK “Mapping the Mass”: Birmingham,
Cheng Zhao Supervisor: Charling Tao
Jochen Weller Decrypting the Universe Edinburgh, October, 2007 未来 の 暗 黒 エネルギー 実 験 の 相補性.
The Nature of Dark Energy David Weinberg Ohio State University Based in part on Kujat, Linn, Scherrer, & Weinberg 2002, ApJ, 572, 1.
The HORIZON Quintessential Simulations A.Füzfa 1,2, J.-M. Alimi 2, V. Boucher 3, F. Roy 2 1 Chargé de recherches F.N.R.S., University of Namur, Belgium.
The Dark Side of the Universe L. Van Waerbeke APSNW may 15 th 2009.
Princeton University & APC
Complementarity of Dark Energy Probes
Ignacy Sawicki CEICO, Institute of Physics, Prague
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
Presentation transcript:

Scalar field quintessence by cosmic shear constraints from VIRMOS-Descart and CFHTLS and future prospects July 2006, Barcelona IRGAC 2006 In collaboration with: I.Tereno, J.-P.Uzan, Y.Mellier, (IAP), L.vanWaerbeke (British Columbia U.),... Carlo Schimd DAPNIA / CEA DUNE Team & Institut d’Astrophysique de Paris Based on: astro-ph/

Dark energy: parametrization.vs. “physics” inspired {baryons, , } + DM + GR {baryons, , } + DM + GR alone cannot account for the cosmological dynamics seen by CMB + LSS + SNe +...    GR : not valid anymore?  scalar-tensor theories, braneworld, etc. Other “matter” fields?  cosmological constant, quintessence, K-essence, etc. Dark energy Dark energy  H(z)-H r+m+GR (z)  1/0 approach: 1/0 approach: parameterization of w(z)  departures from  CDM limitation in redshift ? pivot redshift z p : observable/dataset dependent Not adapted for combining low-z and high-z observables and/or several datasets parameters  physics # p.: limitation to likelihood computation     perturbations: how ? Fitted T(k) Physics-inspired approach: Physics-inspired approach: classes  experimental/observational tests  high-energy physics ?!  w : full redshift range  small # p.  perturbations: consistently accounted for Uzan, Aghanim, Mellier (2004); Uzan, astro-ph/  Validity of Copernican principle?  effect of inhomogeneities?

     geodesic deviation equation Quintessence by cosmic shear. I convergence  shear      N-pts  2-pts correlation functions in real space: Remark: just geometry, valid also for ST gravity C.S., J.-P.Uzan, A.Riazuelo (2004) obs gal LSS:  M ap 2   v i

angular distance  angular distance  q(z); 3D  2D projection growth factor  growth factor  amplitude of 3D L/NL power spectrum   amplitude + shape of 2D spectra with respect to , quintessence modifies Quintessence by cosmic shear. II NON-LINEAR regime:  N-body:  N-body:...  mappings:  mappings: stable clustering, halo model, etc.: NL P m (k,z) = f [ L P m (k,z)] e.g. Peacock & Dodds (1996) Smith et al. (2003) calibrated with  CDM N-body sim, 5-10% agreement Huterer & Takada (2005) QCDM  GR  Poisson eq. normalization to high-z (CMB): ...normalization to high-z (CMB): the modes k enter in non-linear regime (  (k)  1 ) at different time  3D non-linear power spectrum is modified  2D shear power spectrum is modified by k = / S K (z)     Ansatz:  Ansatz:  c, bias, c, etc. not so much dependent on cosmology  at every z we can use them, provided we use the correct linear growth factor (defining the onset of the NL regime)...

** Riazuelo & Uzan (2002) C.S., Uzan & Riazuelo (2004) * * CMB can be taken into account at no cost  Q models:  Q models: self-interacting scalar field minimally/non-minimally couled to g  ** *pipeline  no fit for power spectra  (restricted) parameter space:  (restricted) parameter space:  Q, , n s, z source  ; marginalization over z source

wide survey : Q - geometrical effects (IPL) inverse power law Peacock & Dodds (1996) real data CFHTLS wide/22deg2 (real data) synth CFHTLS wide/170deg2 (synth)   top-hat top-hat variance aperture mass variance > 20 arcmin only scales > 20 arcmin synth CFHTLS wide/170deg2 (synth) top-hat top-hat variance

wide survey : Q - geometrical effects (SUGRA) SUGRA Peacock & Dodds (1996) real data CFHTLS wide/22deg2 (real data) synth CFHTLS wide/170deg2 (synth)   top-hat top-hat variance aperture mass variance > 20 arcmin only scales > 20 arcmin synth CFHTLS wide/170deg2 (synth) top-hat top-hat variance

cosmic shear + SNe + CMB : Q equation of state inverse power law SUGRA (n s,z s ): marginalized ; all other parameters: fixed SNe: confirmed literature TT-CMB: rejection from first peak (analytical (Doran et al. 2000) & numerical)  Mass scale M: indicative Cosmic shear Cosmic shear (real data only): IPL: IPL: strong degeneracy with SNe SUGRA: SUGRA: 1) beware of systematics! (wl: calibration when combining datasets) 2) limit case: prefectly known/excluded Q model (weakly  -dependence) Van Waerbeke et al. (2006) VIRMOS-Descart + CFHTLS deep + CFHTLS wide/22deg2 +

Q by cosmic shear : Fisher matrix analysis CFHTLSwide/170  DUNE = real data analysis +: = real data analysis +  reion : all but ( ,  q,n s ) fixed, (  reion,z s ) marginalized  inverse-power law SNe “goldset” CFHTLSwide/170 CMB WMAP 1yr A = 170 deg 2 n gal = 20/arcmin 2 SUGRA DUNE (pi: A.Réfrégier): wide, shallow survey optimized for WL + SNe A= deg 2 n gal = 35/arcmin 2 All but ( ,  q ) fixed  inverse-power law present setup:

conclusions & prospects quintessence at low-z quintessence at low-z by SNe + cosmic shear, using high-z informations (TT-CMB/Cl normalization)   CDM dynamical models of DE (not parameterization):  CDM  wide, shallow cosmic shear surveys  wide, shallow cosmic shear surveys are suitable  data for the first time cosmic shear data to this task  NL regime:caveat NL regime: (two) L-NL mappings (caveat) Q parameters (seem to) feel only geometry   consistent joint analysis of high-z (CMB) and low-z (cosmic shear, Sne,...) observables  no stress between datasets; no pivot redshift analysisseveralparameters analysis of realistic (=dynamical) models of DE using several parameters other techniques other techniques: cross-correlations (ISW), 3pts functions, tomography Work in progress: pipeline: pipeline: Boltzmann code + lensing code + data analysis by grid method: in collaboration with: I.Tereno, Y.Mellier, J.-P. Uzan, R. Lehoucq, A. Réfrégier & DUNE team     1.2.  1. + CMB data; 2. MCMC analysis (Tereno et al. 2005)  astro-ph/

Thank you

 CMB:  CMB: TT anisotropy WMAP-1yr  initial conditions/  SNe:  SNe: “goldset”  cosmic shear:  cosmic shear: VIRMOS-Descart VanWaerbeke, Mellier, Hoekstra (2004) Semboloni et al. (2005) CFHTLS wide/22deg2 & 170deg2 (synth) wl observables: wl observables: top-hat variance; aperture mass variance  Riess et al. (2004) cosmic shear: cosmic shear: by wide-field imager/DUNE-like satellite mission  Hoekstra et al. (2005) normalization CFHTLS deep Q models, datasets & likelihood analysis (restricted) parameter space: (restricted) parameter space:  Q, , n s, z source  ; marginalization over z source Q models: U ;