超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University)

Slides:



Advertisements
Similar presentations
Current Problems in Dust Formation Theory Takaya Nozawa Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo 2011/11/28.
Advertisements

Non-steady-state dust formation in the ejecta of Type Ia supernovae 2013/08/06 Takaya Nozawa (Kavli IPMU, University of Tokyo) Collaborators: Takashi Kozasa.
Ia 型超新星爆発時に おけるダスト形成 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 前田啓一 (IPMU), 野本憲一 (IPMU/ 東大 ), 小笹隆司 ( 北大 )
Multi-wavelength Observations of Composite Supernova Remnants Collaborators: Patrick Slane (CfA) Eli Dwek (GSFC) George Sonneborn (GSFC) Richard Arendt.
The origin of the most iron - poor star Stefania Marassi in collaboration with G. Chiaki, R. Schneider, M. Limongi, K. Omukai, T. Nozawa, A. Chieffi, N.
銀河進化とダスト 平下 博之 (H. Hirashita) (筑波大学). 1.Importance of Dust in Galaxies 2.Evolution of Dust Amount 3.Importance of Size Distribution 4.Toward Complete.
Dust emission in SNR 1987A and high-z dust observations Takaya Nozawa (Kavli IPMU) 2013/10/24 〇 Contents of this talk - Introduction - Our ALMA proposals.
Composition and Origin of Dust Probed by IR Spectra of SNRs ( 超新星残骸の赤外分光観測から探るダストの組成と起源 ) Takaya Nozawa IPMU (Institute for the Physics and Mathematics.
Current understandings on dust formation in supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/06/25 Main collaborators: Masaomi Tanaka.
Dust Formation in Various Types of Supernovae Takaya Nozawa (IPMU, University of Tokyo) T. Kozasa (Hokkaido Univ.) K. Nomoto (IPMU) K. Maeda (IPMU) H.
Detecting Cool Dust in SNRs in LMC and SMC with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2012/6/11 Targets ・ SN 1987A: our proposal for.
Cas A 超新星残骸中の ダストの進化と熱放射 野沢 貴也 東京大学数物連携宇宙研究機構(IPMU) 共同研究者 小笹 隆司 ( 北大 ), 冨永望 ( 国立天文台 ), 前田啓一 (IPMU), 梅田秀之 ( 東大 ), 野本憲一 (IPMU/ 東大 )
Dust Production Factories in the Early Universe Takaya Nozawa ( National Astronomical Observatory of Japan ) 2015/05/25 - Formation of dust in very massive.
高赤方偏移クェーサーの 星間ダスト進化と減光曲線 (Evolution of grain size distribution in high-redshift quasars: integrating large amounts of dust and unusual extinction curves)
National Astronomical Observatory of Japan
Supernovae as resources of interstellar dust Takaya Nozawa (IPMU, University of Tokyo) 2011/05/06 Collaborators; T. Kozasa, A. Habe (Hokkaido University)
極めて金属量の低い星形成ガス雲 中でのダスト成長と低質量星の形 成 Nozawa et al. (2012, ApJ, 756, L35) 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構 2012/09/19 共同研究者 : 小笹 隆司(北海道大学)
Formation of Dust in Various Types of Supernovae Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators.
Dust production in a variety of types of supernovae Takaya Nozawa (NAOJ, Division of theoretical astronomy) 2014/08/07 Main collaborators: Keiichi Maeda.
Revealing the mass of dust formed in the ejecta of SNe with ALMA ALMA で探る超新星爆発時におけるダスト形成量 Takaya Nozawa (IPMU, University of Tokyo) 2011/1/31 Collaborators;
Low-Mass Star Formation, Triggered by Supernova in Primordial Clouds Masahiro N. Machida (Chiba University) Kohji Tomisaka (NAOJ) Fumitaka Nakamura (Niigata.
Nature of Dust in the early universe Takaya Nozawa IPMU (Institute for the Physics and Mathematics of the Universe, Univ. of Tokyo) Collaborators T. Kozasa,
Formation of Dust in Supernovae and Its Ejection into the ISM Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
Probing Dust Formation Process in SN 1987A with ALMA Takaya Nozawa (Kavli IPMU) and Masaomi Tanaka (NAOJ) 2013/10/22.
Evolution of Newly Formed Dust in Population III Supernova Remnants and Its Impact on the Elemental Composition of Population II.5 Stars Takaya Nozawa.
超新星とダスト 2015/12/17 Contents: - Introduction (10 min) - Current issues on dust formation in SNe (20 min) - Our recent work on SN-origin presolar grains.
Formation and evolution of dust in Type IIb SN: Application to Cas A Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N.
On Dust in the Early Universe Takaya Nozawa (IPMU, University of Tokyo) 2010/07/29 Contents: 1. Observations of dust at high-z 2. Formation of dust in.
Physical Conditions of Supernova Ejecta Probed with the Sizes of Presolar Al 2 O 3 Grains - 超新星起源プレソーラー Al 2 O 3 粒子の形成環境 - (Nozawa, Wakita, Hasegawa, Kozasa,
(National Astronomical Observatory of Japan)
Evolution of dust size distribution and extinction curves in galaxies Takaya Nozawa (National Astronomical Observatory of Japan) 2014/05/21 C ollaborators:
Formation and evolution of dust in hydrogen-poor supernovae Takaya Nozawa (IPMU, Univ. of Tokyo) Collaborators; T. Kozasa (Hokkaido Univ.), N. Tominaga.
超新星ダストのサイズ分布 2016/02/12 Contents: - Introduction - Dust formation in supernovae (SNe) - Dust destruction by SN reverse shocks - Observations of dust size.
Unburned carbon in SNe Ia as viewed from (non-)formation of C grains Takaya Nozawa (IPMU, University of Tokyo) 2011/04/13 Condensation efficiency of carbon.
Supply of dust from supernovae: Theory vs. Observation (超新星爆発によるダストの供給: 理論 vs. 観 測) Takaya Nozawa (IPMU, University of Tokyo) 2011/07/20 Collaborators:
Dust formation theory in astronomical environments
submitted to ApJ Letter Takaya Nozawa (Kavli IPMU)
NAOJ, Division of theoretical astronomy
Mid-infrared Observations of Aged Dusty Supernovae
National Astronomical Observatory of Japan
Kavli IPMU, University of Tokyo
2014/09/13 高赤方偏移クェーサー母銀河の 星間ダスト進化と減光曲線 (Evolution of interstellar dust and extinction curve in the host galaxies of high-z quasars) 野沢 貴也 (Takaya Nozawa)
Supernovae as sources of interstellar dust
Origin and Nature of Dust Grains in the Early Universe
(IPMU, University of Tokyo)
Consensus and issues on dust formation in supernovae
IIb型超新星爆発時のダスト形成と その放出過程
Formation of Dust in the Ejecta of Type Ia Supernovae
東京大学数物連携宇宙研究機構(IPMU)
2010/12/16 Properties of interstellar and circumstellar dust as probed by mid-IR spectroscopy of supernova remnants (超新星残骸の中間赤外分光から探る星間・星周ダスト) Takaya.
Dust formation theory in astronomical environments
Supernovae as sources of interstellar dust
Dust in supernovae Takaya Nozawa
ダスト形成から探る超新星爆発 Supernovae probed by dust formation
Formation of Dust Grains by Supernova Explosion
Dust Synthesis in Supernovae and Reprocessing in Supernova Remnants
Supernova Nucleosynthesis and Extremely Metal-Poor Stars
Supernovae as sources of dust in the early universe
On the non-steady-state nucleation rate
Formation of Dust in the Ejecta of Type Ia Supernovae
Approach to Nucleation in Astronomical Environments
Dust Enrichment by Supernova Explosions
Kavli IPMU, University of Tokyo
Missing-Dust Problem in SNe: Approach from extremely young SNRs
Takaya Nozawa (IPMU, University of Tokyo)
Supernovae as Sources of Interstellar Dust
(National Astronomical Observatory of Japan)
Formation of supernova-origin presolar SiC grains
爆燃Ia型超新星爆発時に おけるダスト形成
Formation and evolution of dust in hydrogen-poor supernovae
Presentation transcript:

超新星放出ガス中でのダスト形 成と衝撃波中でのダスト破壊 野沢 貴也( Takaya Nozawa ) 東京大学 国際高等研究所 カブリ数物連携宇宙研究機構( Kavli IPMU ) 2012/09/05 Collaborators; T. Kozasa, A. Habe (Hokkaido University) K. Maeda, K. Nomoto (IPMU), H. Umeda (U.T.) N. Tominaga (Konan Univ.)

1. Introduction ・ supernovae (SNe) : e xplosions of massive (early type) stars with M ZAMS > 8 M sun ・ SNe are important sources of interstellar dust? - huge amounts of dust grains (>10 8 M sun ) are detected in host galaxies of quasars at redshift z > 5 ➔ 0.1 M sun of dust per SN is needed to explain such massive dust at high-z (e.g. Dwek et al. 2007) - contribution of dust mass from AGB stars and SNe n(AGB stars) / n(SNe) ~ M dust = M sun per AGB (Zhukovska & Gail 2008) M dust = M sun per SN (Nozawa et al. 2003; 2007)

at ~1 days H-envelope He-core NS or BH He–layer (C>O) O–Ne-Mg layer Si–S layer Fe–Ni layer Dust formation at ~1-3 years after explosion 2. Dust Formation in Pop III SNe

2-1. Dust formation in primordial SNe Nozawa+’03, ApJ, 598, 785 ・ nucleation and grain growth theory (Kozasa & Hasegawa’88) ・ complete and no mixing of elements within the He-core ・ complete formation of CO and SiO 〇 Population III SNe model (Umeda & Nomoto’02) ・ SNe II-P : M ZAMS = 13, 20, 25, 30 M sun (E 51 =1) ・ PISNe : M ZAMS = 170 M sun (E 51 =20), 200 M sun (E 51 =28) M env ~ 12 M sun M env ~ 90 M sun

Calculations of dust formation ・ nucleation and grain growth theory taking account of chemical reaction at condensation (Kozasa & Hasegawa’87) ・ key species : gas species with the least collision frequency among reactants key species controls the kinetics of the nucleation and grain growth

Nucleation rate of dust Steady-state nucleation rate Supersaturation ratio

Basic equations for dust formation ・ Equation of mass conservation ・ Equation of grain growth Growth rate is independent of grain radius

Dust formed in primordial SNe ・ Various dust species (C, MgSiO 3, Mg 2 SiO 4, SiO 2, Al 2 O 3, MgO, Si, FeS, Fe) form in the unmixed ejecta, according to the elemental composition of gas in each layer ・ The condensation time: days for SNe II-P days for PISNe Nozawa+’03, ApJ, 598, 785

Size distribution of newly formed dust ・ C, SiO2, and Fe grains have lognormal size distribution, while the other grains have power-law size distribution ・ The composition and size distribution of dust formed are almost independent of type of supernova (average dust radius is smaller for PISNe than SNe II-P) Nozawa+’03, ApJ, 598, 785

・ Because oxygen is rich in the mixed ejecta, only silicates (MgSiO 3, Mg 2 SiO 4, SiO 2 ) and oxides (Fe 3 O 4, Al 2 O 3 ) form ・ The size distribution of each dust species except for Al 2 O 3 is lognormal-like Size distribution of dust in mixed cases

・ Total dust mass increases with increasing M ZAMS SNe II : M dust = M sun, f dep = M dust / M metal = PISNe : M dust =10-60 M sun, f dep = M dust / M metal = ・ Dust mass for the mixed case is generally larger than for the unmixed case SNe II Total mass of dust formed

FS He core RS CD T = (1-2)x10 4 K n H,0 = cm Dust Evolution in SNRs

Time evolution of SNRs

・ Hydrodynamical model of SNe (Umeda & Nomoto’02) ・ SNe II : M pr =13, 20, 25, 30 M sun (E 51 =1) ・ PISNe : M pr =170 (E 51 =20), 200 M sun (E 51 =28) ・ The ambient medium (homogeneous) ・ gas temperature : T = 10 4 K ・ gas density : n H,0 = 0.1, 1, and 10 cm -3 ・ Dust Model ・ initial size distribution and spatial distribution of dust ➔ results of dust formation calculations ・ treating as a test particle The calculation is performed from 10 yr up to ~10 6 yr Initial condition for hydro calculations

Dynamics of dust

Erosion rate of dust by sputtering

Erosion rate of dust by sputtering ・ erosion rate by sputtering quickly increases above 10 5 K and peaks at K ・ erosion rate : da / dt ~ n H μm yr -1 cm 3 for the primordial gas (H and He) at T > 10 6 K for primordial composition gas for oxygen ions Nozawa+’06, ApJ, 648, 435

・ sputtering による erosion rate は, 10 5 K (数十 km/s )から急 激 に増加し、 10 7 K から 10 8 K ( 1000km/s )でピークをもつ ・ da/dt ~ n H μm yr -1 for T > 10 6 K 3-5. Erosion rate of dust by sputtering

Temperature and density of gas in SNRs Model : M pr = 20 M sun (E 51 =1) n H,0 = 1 cm -3 The temperature of the gas swept up by the shocks ➔ K ↓ Dust grains residing in the shocked hot gas are eroded by sputtering Downward-pointing arrows: forward shock in upper panel reverse shock in lower panel Nozawa+’07, ApJ, 666, 955

Evolution of dust in SNRs Dust grains in the He core collide with reverse shock at (3-13)x10 3 yr The evolution of dust heavily depends on the initial radius and composition a ini = 0.01 μm (dotted lines) ➔ completely destroyed a ini = 0.1 μm (solid lines) ➔ trapped in the shell a ini = 1 μm (dashed lines) ➔ injected into the ISM Model : M pr = 20 M sun (E 51 =1) n H,0 = 1 cm -3 Nozawa+’07, ApJ, 666, 955

Dust mass and size ejected from SN II-P total dust mass surviving the destruction in Type II-P SNRs; M sun (n H,0 = cm -3 ) Nozawa+’07, ApJ, 666, 955 size distribution of dust after RS destruction is domimated by large grains (> 0.01 μm) SNe II-P at time of dust formation after destruction of dust by reverse shock PISNe

・ Various species of dust form in the unmixed ejecta (almost all Fe, Mg, and Si atoms are locked in dust) ・ The fate of newly formed dust within primordial SNRs strongly depends on the initial radii and compositions. ・ The size distribution of dust surviving the destruction in SNRs is weighted to relatively large size (> 0.01 μm). ・ The total mass of dust injected into the ISM decreases with increasing the ambient gas density for n H,0 = cm -3 SNe II-P ➔ M dust = M sun PISNe ➔ M dust = M sun 3-4. Summary of dust production in Pop III SNe

3. Formation of dust grains in various types of SNe

5-1. Dust formation in Type IIb SN ○ SN IIb model (SN1993J-like model) - M eje = 2.94 M sun M ZAMS = 18 M sun M H-env = 0.08 M sun - E 51 = 1 - M( 56 Ni) = 0.07 M sun

5-2. Dependence of dust radii on SN type SN IIb SN II-P 0.01 μm - condensation time of dust d after explosion - total mass of dust formed ・ M sun in SN IIb ・ M sun in SN II-P - the radius of dust formed in H-stripped SNe is small ・ SN IIb without massive H-env ➔ a dust < 0.01 μm ・ SN II-P with massive H-env ➔ a dust > 0.01 μm Nozawa+’10, ApJ, 713, 356

5-3. Destruction of dust in Type IIb SNR Almost all newly formed grains are destroyed in shocked gas within the SNR for CSM gas density of n H > 0.1 /cc ➔ small radius of newly formed dust ➔ early arrival of reverse shock at dust-forming region n H,1 = 30, 120, 200 /cc ➔ dM/dt = 2.0, 8.0, 13x10 -5 M sun /yr for v w =10 km/s homogeneous CSM (ρ = const) stellar-wind CSM (ρ ∝ r -2 ) 330 yr Nozawa+’10, ApJ, 713, 356

5-4. IR emission from dust in Cas A SNR ・ total mass of dust formed M dust = M sun ・ shocked dust : M sun M d,warm = M sun ・ unshocked dust : M d,cool = M sun with T dust ~ 40 K AKARI observation M d,cool = M sun T dust = K (Sibthorpe+’10) Herschel observation M d,cool = M sun T dust ~ 35 K (Barlow+’10) AKARI corrected 90 μm image Nozawa et al. 2010, ApJ, 713, 356

8. Summary of this talk ・ SNe are important sources of dust? - maybe, Yes in the early universe (at least, to serve the seeds for grain growth in the ISM) ・ Size of newly formed dust depends on types of Sne - H-retaining SNe (Type II-P) : a ave > 0.01 μm - H-stripped SNe (Type IIb/Ib/Ic and Ia) : a ave < 0.01 μm ➔ dust is almost completely destroyed in the SNRs ➔ H-stripped SNe may be poor producers of dust ・ Our model treating dust formation and evolution self- consistently can reproduce IR emission from Cas A ・ Mass of dust in SNe must be dominated by cool dust ➔ FIR and submm observations of SNe are essential