Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret.

Slides:



Advertisements
Similar presentations
1 Chapter 5-1. PN-junction electrostatics You will also learn about: Poisson’s Equation Built-In Potential Depletion Approximation Step-Junction Solution.
Advertisements

Department of Electronics Semiconductor Devices 25 Atsufumi Hirohata 11:00 Monday, 1/December/2014 (P/L 005)
Metal-semiconductor (MS) junctions
ECE 4339: Physical Principles of Solid State Devices
Integrated Circuit Devices
Semiconductor Device Physics Lecture 6 Dr. Gaurav Trivedi, EEE Department, IIT Guwahati.
Department of Electronics Introductory Nanotechnology ~ Basic Condensed Matter Physics ~ Atsufumi Hirohata.
Spring 2007EE130 Lecture 29, Slide 1 Lecture #29 ANNOUNCEMENTS Reminder: Quiz #4 on Wednesday 4/4 No Office Hour or Coffee Hour on Wednesday Tsu-Jae will.
Lecture #6 OUTLINE Carrier scattering mechanisms Drift current
Department of Electronics Semiconductor Devices 26 Atsufumi Hirohata 11:00 Tuesday, 2/December/2014 (P/T 006)
Spring 2007EE130 Lecture 13, Slide 1 Lecture #13 ANNOUNCEMENTS Quiz #2 next Friday (2/23) will cover the following: – carrier action (drift, diffusion,
Spring 2007EE130 Lecture 34, Slide 1 Lecture #34 OUTLINE The MOS Capacitor: MOS non-idealities (cont.) V T adjustment Reading: Chapter 18.3.
Spring 2007EE130 Lecture 10, Slide 1 Lecture #10 OUTLINE Poisson’s Equation Work function Metal-Semiconductor Contacts – equilibrium energy-band diagram.
Deviations from simple theory and metal-semiconductor junctions
Lecture #3 OUTLINE Band gap energy Density of states Doping Read: Chapter 2 (Section 2.3)
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
MatE/EE 1671 EE/MatE 167 Diode Review. MatE/EE 1672 Topics to be covered Energy Band Diagrams V built-in Ideal diode equation –Ideality Factor –RS Breakdown.
Spring 2007EE130 Lecture 30, Slide 1 Lecture #30 OUTLINE The MOS Capacitor Electrostatics Reading: Chapter 16.3.
Read: Chapter 2 (Section 2.4)
Chapter V July 15, 2015 Junctions of Photovoltaics.
Lecture 2 OUTLINE Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading: Pierret , 3.1.5;
Metal-Semiconductor Interfaces
Lecture 2 OUTLINE Important quantities Semiconductor Fundamentals (cont’d) – Energy band model – Band gap energy – Density of states – Doping Reading:
ECE685 Nanoelectronics – Semiconductor Devices Lecture given by Qiliang Li.
Semiconductor Devices 27
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
EE 5340 Semiconductor Device Theory Lecture 8 - Fall 2009 Professor Ronald L. Carter
EE 5340 Semiconductor Device Theory Lecture 11 – Spring 2011 Professor Ronald L. Carter
Integrated Circuit Devices Professor Ali Javey Summer 2009 MS Junctions Reading: Chapter14.
Barcelona, 31 May- 2 June Contacts to High-Resistivity Semiconductors Arie Ruzin School of EE, Faculty of Engineering, Tel Aviv University, Israel.
Lecture 4 OUTLINE Semiconductor Fundamentals (cont’d)
EE 5340 Semiconductor Device Theory Lecture 08 – Spring 2011 Professor Ronald L. Carter
ENE 311 Lecture 9.
© 2012 Eric Pop, UIUCECE 340: Semiconductor Electronics ECE 340 Lecture 30 Metal-Semiconductor Contacts Real semiconductor devices and ICs always contain.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – Poly-Si gate depletion effect – V T adjustment Reading: Pierret ; Hu.
Lecture 9 OUTLINE pn Junction Diodes – Electrostatics (step junction) Reading: Pierret 5; Hu
Lecture 3 OUTLINE Semiconductor Fundamentals (cont’d) – Thermal equilibrium – Fermi-Dirac distribution Boltzmann approximation – Relationship between E.
Lecture 18 OUTLINE The MOS Capacitor (cont’d) – Effect of oxide charges – V T adjustment – Poly-Si gate depletion effect Reading: Pierret ; Hu.
 P-N Junction Diodes  How do they work? (postponing the math) Chap. 5.2.
MOS Device Physics and Designs Chap. 3 Instructor: Pei-Wen Li Dept. of E. E. NCU 1 Chap 3. P-N junction  P-N junction Formation  Step PN Junction  Fermi.
ECE 875: Electronic Devices Prof. Virginia Ayres Electrical & Computer Engineering Michigan State University
Chemistry 140a Lecture #5 Jan, Fermi-Level Equilibration When placing two surfaces in contact, they will equilibrate; just like the water level.
Introduction to semiconductor technology. Outline –6 Junctions Metal-semiconductor junctions –6 Field effect transistors JFET and MOS transistors Ideal.
EE 5340 Semiconductor Device Theory Lecture 10 – Fall 2010 Professor Ronald L. Carter
President UniversityErwin SitompulSDP 11/1 Lecture 11 Semiconductor Device Physics Dr.-Ing. Erwin Sitompul President University
EE130/230A Discussion 10 Peng Zheng.
Lecture 11 OUTLINE pn Junction Diodes (cont’d) – Narrow-base diode – Junction breakdown Reading: Pierret 6.3.2, 6.2.2; Hu 4.5.
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Chapter 14. MS Contacts and Practical Contact Considerations
Lecture 2 OUTLINE Important quantities
A p-n junction is not a device
Lecture #12 OUTLINE Metal-semiconductor contacts (cont.)
Lecture #30 OUTLINE The MOS Capacitor Electrostatics
Lecture 7 OUTLINE Poisson’s equation Work function
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 8 OUTLINE Metal-Semiconductor Contacts (cont’d)
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 7 OUTLINE Poisson’s equation Work function
EE130/230A Discussion 5 Peng Zheng.
Chapter 4.1 Metal-semiconductor (MS) junctions
Lecture 15 OUTLINE The MOS Capacitor Energy band diagrams
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
Lecture 7 OUTLINE Work Function Metal-Semiconductor Contacts
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 10 OUTLINE pn Junction Diodes (cont’d)
EE130/230A Discussion 4 Peng Zheng.
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Lecture 16 OUTLINE The MOS Capacitor (cont’d) Electrostatics
Presentation transcript:

Lecture 7 OUTLINE Poisson’s equation Work function Metal-Semiconductor Contacts – Equilibrium energy band diagrams – Depletion-layer width Reading: Pierret 5.1.2, ; Hu 4.16

Gauss’ Law:  s : permittivity (F/cm)  : charge density (C/cm 3 ) Poisson’s Equation E(x)E(x) E(x+x)E(x+x) xx area A EE130/230M Spring 2013Lecture 7, Slide 2

Charge Density in a Semiconductor Assuming the dopants are completely ionized:  = q (p – n + N D – N A ) EE130/230M Spring 2013Lecture 7, Slide 3

Work Function  M : metal work function  S : semiconductor work function  0 : vacuum energy level EE130/230M Spring 2013Lecture 7, Slide 4

Metal-Semiconductor Contacts There are 2 kinds of metal-semiconductor contacts: rectifying “Schottky diode” non-rectifying “ohmic contact” EE130/230M Spring 2013Lecture 7, Slide 5

Ideal M-S Contact:  M <  S, p-type Band diagram instantly after contact formation: Equilibrium band diagram: Schottky Barrier Height: EE130/230M Spring 2013Lecture 7, Slide 6 qV bi =  Bp – (E F – E v ) FB W p-type semiconductor  Bp

EE130/230M Spring 2013Lecture 7, Slide 7 Ideal M-S Contact:  M >  S, p-type p-type semiconductor Equilibrium band diagram: Band diagram instantly after contact formation:

Ideal M-S Contact:  M <  S, n-type EE130/230M Spring 2013Lecture 7, Slide 8 Band diagram instantly after contact formation: Equilibrium band diagram:

Ideal M-S Contact:  M >  S, n-type Band diagram instantly after contact formation: Equilibrium band diagram: Schottky Barrier Height: EE130/230M Spring 2013Lecture 7, Slide 9 qV bi =  Bn – (E c – E F ) FB W n

Effect of Interface States on  Bn Ideal M-S contact:  Bn =  M –  Real M-S contacts: A high density of allowed energy states in the band gap at the M-S interface “pins” E F to be within the range 0.4 eV to 0.9 eV below E c EE130/230M Spring 2013Lecture 7, Slide 10 MM  Bn

 Bn tends to increase with increasing metal work function Schottky Barrier Heights: Metal on Si EE130/230M Spring 2013Lecture 7, Slide 11

Silicide-Si interfaces are more stable than metal-silicon interfaces and hence are much more prevalent in ICs. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts. Schottky Barrier Heights: Silicide on Si EE130/230M Spring 2013Lecture 7, Slide 12

The Depletion Approximation The semiconductor is depleted of mobile carriers to a depth W  In the depleted region (0  x  W ):  = q (N D – N A ) Beyond the depleted region (x > W ):  = 0 EE130/230M Spring 2013Lecture 7, Slide 13

Electrostatics Poisson’s equation: The solution is: EE130/230M Spring 2013Lecture 7, Slide 14

Depletion Width, W At x = 0, V = -V bi W decreases with increasing N D EE130/230M Spring 2013Lecture 7, Slide 15

Summary: Schottky Diode (n-type Si) EoEo  MM  Si  Bn W qV bi =  Bn – (E c – E FS ) FB n-type Simetal EvEv EFEF EcEc  M >  S Depletion width EE130/230M Spring 2013Lecture 7, Slide 16

Summary: Schottky Diode (p-type Si)  MM  Si  Bp W qV bi =  Bp – (E F – E v ) FB p-type Simetal EvEv EFEF EcEc EoEo  M <  S EE130/230M Spring 2013Lecture 7, Slide 17 Depletion width