Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29.

Slides:



Advertisements
Similar presentations
MICROWAVE FET Microwave FET : operates in the microwave frequencies
Advertisements

Display Systems and photosensors (Part 2)
Modulation of conductive property in VO 2 nano-wires through an air gap-mediated electric field Tsubasa Sasaki (Tanaka-lab) 2013/10/30.
ELECTRICAL CONDUCTIVITY
Mott FET ITRS Workshop on Emerging Research Logic Devices Bordeaux, France, September 21, 2012 A. Sawa 1,2 S. Asanuma, 1,2 P.-H. Xiang, 1,2 I. H. Inoue,
Budapest University of Technology and Economics Department of Electron Devices Microelectronics, BSc course Basic semiconductor physics.
Carbon nanotube field effect transistors (CNT-FETs) have displayed exceptional electrical properties superior to the traditional MOSFET. Most of these.
Graphene & Nanowires: Applications Kevin Babb & Petar Petrov Physics 141A Presentation March 5, 2013.
Materials 286K Special Topics in Inorganic Materials: Non-metal to Metal Transitions 1.Purpose of this course 2.Counting electrons.
ISSUES TO ADDRESS... How are electrical conductance and resistance characterized ? 1 What are the physical phenomena that distinguish conductors, semiconductors,
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Semiconductor Device Physics
Alexey Belyanin Texas A&M University A. Wojcik TAMU
Materials 286K Class 02. The Peierls distortion seen in 1D chains: The simplest model for a gap. Note that we go from being valence-imprecise.
Ballistic and quantum transports in carbon nanotubes.
Structural and optical properties of pulsed laser deposited V 2 O 5 thin f ilms Apr 20 th, 2009 Thin film class Paper reading session Presentation by Jiajia.
Tanaka Lab. Yasushi Fujiwara Three dimensional patterned MgO substrates ~ fabrication of FZO nanowire structure~
Lecture 25: Semiconductors
Microscopic Ohm’s Law Outline Semiconductor Review Electron Scattering and Effective Mass Microscopic Derivation of Ohm’s Law.
Field-Effect Transistor
Mon, 6 Jun 2011 Gabriel Kotliar
Giant magneto resistivity in Fe 3-x Zn x O 4 nanowire structures 産研 田中研 尾野 篤志.
ELECTRICAL PROPERTIES
NEGF Method: Capabilities and Challenges
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
VFET – A Transistor Structure for Amorphous semiconductors Michael Greenman, Ariel Ben-Sasson, Nir Tessler Sara and Moshe Zisapel Nano-Electronic Center,
Microcantilevers III Cantilever based sensors: 1 The cantilever based sensors can be classified into three groups (i)General detection of any short range.
Chapter 5: Field Effect Transistor
Spin Dependent Transport Properties of Magnetic Nanostructures Amédée d’Aboville, with Dr. J. Philip, Dr. S. Kang, with Dr. J. Philip, Dr. S. Kang, J.
Nano-scaled domain in the strongly correlated electron materials ( 強相関電子系におけるナノスケール電子相ドメイン ) Tanaka Laboratory Kenichi Kawatani First M1 colloquium.
Taklimat UniMAP Universiti Malaysia Perlis WAFER FABRICATION Hasnizah Aris, 2008 Lecture 2 Semiconductor Basic.
ISIR Tanaka lab. Tatsuya Hori 層状鉄酸化物を用いた電子相変化デバイスの 応用に向けた研究.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 8: September 24, 2010 MOS Model.
Transparent Electro-active Oxides and Nano-technology Hideo HOSONO Frontier Collaborative Research Center & Materials and Structures Laboratory, Tokyo.
Chap. 41: Conduction of electricity in solids Hyun-Woo Lee.
Fabrication of oxide nanostructure using Sidewall Growth 田中研 M1 尾野篤志.
Fabrication of (Fe,Zn) 3 O 4 -BiFeO 3 nano-pillar structure by self- assembled growth Tanaka Laboratory Takuya Sakamoto.
11/13 Development of ferrite-based electronic-phase-change devices Tanaka lab. Tatsuya Hori.
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
1 光電子分光でプローブする 遷移金属酸化物薄膜の光照射効果 Photo-induced phenomena in transition-metal thin films probed by photoemission spectroscopy T. Mizokawa, J.-Y. Son, J. Quilty,
Photoluminescence-excitation spectra on n-type doped quantum wire
Fabrication of (Fe,Mn)3O4 nanowires using a sidewall deposition method
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Slide # Goutam Koley Electronic characterization of dislocations MorphologyPotential 0.1 V /Div 10 nm /Div Surf. Potential G. Koley and M. G. Spencer,
CORPORATE INSTITUTE OF SCIENCE & TECHNOLOGY, BHOPAL DEPARTMENT OF ELECTRONICS & COMMUNICATIONS NMOS FABRICATION PROCESS - PROF. RAKESH K. JHA.
Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial Hiroki Okada Asida Lab. Osaka Univ.
Master Colloquium Field-effect Control of Insulator-metal Transition Property in Strongly Correlated (La,Pr,Ca)MnO 3 Film Ion Liquid (IL) LPCMO channel.
Sid Nb device fabrication Superconducting Nb thin film evaporation Evaporate pure Nb to GaAs wafer and test its superconductivity (T c ~9.25k ) Tc~2.5K.
Penn ESE370 Fall DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 9: September 26, 2011 MOS Model.
Electric-field Effect on Transition Properties in a Strongly Correlated Electron (La,Pr,Ca)MnO 3 Film Electric Double Layer Transistor Source Drain Gate.
Suppression of Random Dopant-Induced Threshold Voltage Fluctuations in Sub-0.1μm MOSFET’s with Epitaxial and δ-Doped Channels A. Asenov and S. Saini, IEEE.
Fowler-Nordheim Tunneling in TiO2 for room temperature operation of the Vertical Metal Insulator Semiconductor Tunneling Transistor (VMISTT) Lit Ho Chong,Kanad.
President UniversityErwin SitompulSDP 2/1 Dr.-Ing. Erwin Sitompul President University Lecture 2 Semiconductor Device Physics
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
1. Photo-voltaic anomalous transport in graphene 強相関電子系・異常量子系の非平衡での物性 2. Photo-induced phase transition in Mott insulators 2.1. Photo-induced TL-like liquid.
II-VI Semiconductor Materials, Devices, and Applications
금속 - 절연체 전이 (MIT) 현상의 규명 및 응용 김현탁 박사 ( 한국전자통신연구원 )
Charge-Density-Wave nanowires Erwin Slot Mark Holst Herre van der Zant Sergei Zaitsev-Zotov Sergei Artemenko Robert Thorne Molecular Electronics and Devices.
course Name: Semiconductors
Electrical conductivity Energy bands in solids
Metal Semiconductor Field Effect Transistors
Power Dissipation in Nanoelectronics
Downsizing Semiconductor Device (MOSFET)
Basics of Electronics Conductors: have low resistance which allows electrical current flow easily. Insulators: have high resistance which suppresses electrical.
Day 9: September 18, 2013 MOS Model
Elma Carvajal Gallardo
Introduction to Materials Science and Engineering
Ionic liquid gating of VO2 with a hBN interfacial barrier
Fig. 3 Electrical characterization and TCAD simulations of 1D2D-FET.
Fig. 4 Transfer characteristics of the carristor.
Presentation transcript:

Electric field control of Metal- insulator phase transition in VO2 nano-wire channel Tsubasa Sasaki (Tanaka-lab) 2013/5/29

Contents ・ Background Metal-insulator transition(MIT) of strongly-correlated electron(Mott) materials (ex. VO 2 ) How to control of MIT? Mott FET ・ Purpose of my research Control of MIT by electric field ・ Principle of Mott transition ・ My original model ・ Experiment Pulsed laser deposition ( PLD ) Nano imprint lithography ・ Result ・ Summary

Background strongly-correlated electron materials ( 強相関電子系材料 ) VO 2 strongly-correlated electron materials ( 強相関電子系材料 ) VO 2 Mott insulator (モット絶縁 体 ) Temperature Impurity doping Temperature Impurity doping Huge resistivity change (10 3 ~ 10 4 Ω) Huge resistivity change (10 3 ~ 10 4 Ω) Metal-insulator transition(MIT) Temperature change Impurity doping (V 3+,4+,W 6+ ) O 2

Background How to control the MIT? Control of MIT by electric field MIT : metal-insulator transition Porpose of my reserch Mott FET Device Gate DrainSource VGVG Drain current Metal

M.M.Qazilbash et al, Science 318, 1750 (2007) Phase separation with 100 nm-sized domains around Metal-Insulator transition VO 2 Background

Carrier doping by electric field Advantage Doping only carrier ( Not impurity doping ) Flexible(Electric field) Observable(Domain) Using side-gate FET structures Control of MIT by carrier doping Purpose A Source Drain Gate d L W Insulator Metal VO 2 Pt

Principle ( Brinkman Rice ) BR picture Effective mass changes dramatically n 0 =1.69x10 22 cm -3 Effective mass changes greatly band filling is changed : Features of strongly-correlated electron system Carrier doping not silicon

Mott criterion Principle ( Mott transition ) Insulator Metal Effective Bohr radius P. P. Edwards et al, J. Phys. Chem, 99 (1995) 5228

My original model Carrier doping amount by electric field E g =0.12 eV k B =8.617 ev/K Carrier doping amount by thermal excitation In fact, since the experiment at finite temperature, it is necessary to consider the thermal excitation carrier. Mott criterion(carrier doping)

My original model Insulator Metal Electric field switching Insulator Metal

Experiment(PLD) Pulse laser deposition (PLD) ArF ( λ=193nm ) レーザ 基板 レーザ Al 2 O 3 VO 2 Production of thin film 基板 V 2 O 5 焼結体

Experiment(nanoimprint) Production of structure A optical micrograph Process 4mm 0.5mm

Result A AFM image optical micrograph Successful production of side-gate FET structures VO 2 Pt Nano wire 400nm 300nm

Summary I made an ​​original model using temperature parameter (T) and gate voltage (Vg) combined with the BR picture and the Mott criterion ● I have successfully created side-gate FET structures ● Further work Electronic propaty measurement I will control MIT by electric field