Lei Li Computer Science Department Carnegie Mellon University Pre Proposal Time Series Learning completed work 11/27/2015.

Slides:



Advertisements
Similar presentations
Bayesian Belief Propagation
Advertisements

Incremental Clustering for Trajectories
State Estimation and Kalman Filtering CS B659 Spring 2013 Kris Hauser.
FUNNEL: Automatic Mining of Spatially Coevolving Epidemics Yasuko Matsubara, Yasushi Sakurai (Kumamoto University) Willem G. van Panhuis (University of.
Data Mining Feature Selection. Data reduction: Obtain a reduced representation of the data set that is much smaller in volume but yet produces the same.
Fast Algorithms For Hierarchical Range Histogram Constructions
Learning from Demonstrations Jur van den Berg. Kalman Filtering and Smoothing Dynamics and Observation model Kalman Filter: – Compute – Real-time, given.
Modeling the Shape of People from 3D Range Scans
1.Introduction 2.Article [1] Real Time Motion Capture Using a Single TOF Camera (2010) 3.Article [2] Real Time Human Pose Recognition In Parts Using a.
Streaming Pattern Discovery in Multiple Time-Series Spiros Papadimitriou Jimeng Sun Christos Faloutsos Carnegie Mellon University VLDB 2005, Trondheim,
Yanxin Shi 1, Fan Guo 1, Wei Wu 2, Eric P. Xing 1 GIMscan: A New Statistical Method for Analyzing Whole-Genome Array CGH Data RECOMB 2007 Presentation.
Introduction to Data-driven Animation Jinxiang Chai Computer Science and Engineering Texas A&M University.
1 Distributed localization of networked cameras Stanislav Funiak Carlos Guestrin Carnegie Mellon University Mark Paskin Stanford University Rahul Sukthankar.
1 ENHANCED RSSI-BASED HIGH ACCURACY REAL-TIME USER LOCATION TRACKING SYSTEM FOR INDOOR AND OUTDOOR ENVIRONMENTS Department of Computer Science and Information.
Detecting Image Region Duplication Using SIFT Features March 16, ICASSP 2010 Dallas, TX Xunyu Pan and Siwei Lyu Computer Science Department University.
Presented by Ozgur D. Sahin. Outline Introduction Neighborhood Functions ANF Algorithm Modifications Experimental Results Data Mining using ANF Conclusions.
1. 2 General problem Retrieval of time-series similar to a given pattern.
Discriminative Training of Kalman Filters P. Abbeel, A. Coates, M
Detecting Time Series Motifs Under
A Multiresolution Symbolic Representation of Time Series
Tracking with Linear Dynamic Models. Introduction Tracking is the problem of generating an inference about the motion of an object given a sequence of.
Energy-efficient Self-adapting Online Linear Forecasting for Wireless Sensor Network Applications Jai-Jin Lim and Kang G. Shin Real-Time Computing Laboratory,
Parsimonious Linear Fingerprinting for Time Series Lei Li joint work with B. Aditya Prakash, Christos Faloutsos School of Computer Science Carnegie Mellon.
Cut-And-Stitch: Efficient Parallel Learning of Linear Dynamical Systems on SMPs Lei Li Computer Science Department School of Computer Science Carnegie.
Tracking with Unreliable Node Sequences Ziguo Zhong, Ting Zhu, Dan Wang and Tian He Computer Science and Engineering, University of Minnesota Infocom 2009.
Learning Stable Multivariate Baseline Models for Outbreak Detection Sajid M. Siddiqi, Byron Boots, Geoffrey J. Gordon, Artur W. Dubrawski The Auton Lab.
Time Series Data Analysis - I Yaji Sripada. Dept. of Computing Science, University of Aberdeen2 In this lecture you learn What are Time Series? How to.
Combined Central and Subspace Clustering for Computer Vision Applications Le Lu 1 René Vidal 2 1 Computer Science Department, Johns Hopkins University,
Fast Mining and Forecasting of Complex Time-Stamped Events Yasuko Matsubara (Kyoto University), Yasushi Sakurai (NTT), Christos Faloutsos (CMU), Tomoharu.
Adaptive Multi-path Prediction for Error Resilient H.264 Coding Xiaosong Zhou, C.-C. Jay Kuo University of Southern California Multimedia Signal Processing.
AutoPlait: Automatic Mining of Co-evolving Time Sequences Yasuko Matsubara (Kumamoto University) Yasushi Sakurai (Kumamoto University) Christos Faloutsos.
Institute of Flight Mechanics and Control Barcelona, LISA7 Symposium, June 17th 2008 IFR – University of Stuttgart LISA Pathfinder.
Carnegie Mellon School of Computer Science Forecasting with Cyber-physical Interactions in Data Centers Lei Li PDL Seminar 9/28/2011.
Computer Science and Engineering Parallelizing Defect Detection and Categorization Using FREERIDE Leonid Glimcher P. 1 ipdps’05 Scaling and Parallelizing.
Mingyang Zhu, Huaijiang Sun, Zhigang Deng Quaternion Space Sparse Decomposition for Motion Compression and Retrieval SCA 2012.
Gap-filling and Fault-detection for the life under your feet dataset.
Processing Sequential Sensor Data The “John Krumm perspective” Thomas Plötz November 29 th, 2011.
Intelligent Database Systems Lab 國立雲林科技大學 National Yunlin University of Science and Technology Mining Logs Files for Data-Driven System Management Advisor.
State Estimation and Kalman Filtering
Stream Monitoring under the Time Warping Distance Yasushi Sakurai (NTT Cyber Space Labs) Christos Faloutsos (Carnegie Mellon Univ.) Masashi Yamamuro (NTT.
Analyzing wireless sensor network data under suppression and failure in transmission Alan E. Gelfand Institute of Statistics and Decision Sciences Duke.
Active Frame Selection for Label Propagation in Videos Sudheendra Vijayanarasimhan and Kristen Grauman Department of Computer Science, University of Texas.
Streaming Pattern Discovery in Multiple Time-Series Jimeng Sun Spiros Papadimitrou Christos Faloutsos PARALLEL DATA LABORATORY Carnegie Mellon University.
DM-MEETING Bijaya Adhikari OUTLINE From Micro to Macro: Uncovering and Predicting Information Cascading Process with Behavioral Dynamics 
Multimedia Systems and Communication Research Multimedia Systems and Communication Research Department of Electrical and Computer Engineering Multimedia.
Week Aug-24 – Aug-29 Introduction to Spatial Computing CSE 5ISC Some slides adapted from the book Computing with Spatial Trajectories, Yu Zheng and Xiaofang.
D YNA MM O : M INING AND S UMMARIZATION OF C OEVOLVING S EQUENCES WITH M ISSING V ALUES Christos Faloutsos joint work with Lei Li, James McCann, Nancy.
A Protocol for Tracking Mobile Targets using Sensor Networks H. Yang and B. Sikdar Department of Electrical, Computer and Systems Engineering Rensselaer.
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
An Energy-Efficient Approach for Real-Time Tracking of Moving Objects in Multi-Level Sensor Networks Vincent S. Tseng, Eric H. C. Lu, & Kawuu W. Lin Institute.
D YNA MM O : M INING AND S UMMARIZATION OF C OEVOLVING S EQUENCES WITH M ISSING V ALUES Lei Li joint work with Christos Faloutsos, James McCann, Nancy.
Planning Tracking Motions for an Intelligent Virtual Camera Tsai-Yen Li & Tzong-Hann Yu Presented by Chris Varma May 22, 2002.
Facets: Fast Comprehensive Mining of Coevolving High-order Time Series Hanghang TongPing JiYongjie CaiWei FanQing He Joint Work by Presenter:Wei Fan.
On Mobile Sink Node for Target Tracking in Wireless Sensor Networks Thanh Hai Trinh and Hee Yong Youn Pervasive Computing and Communications Workshops(PerComW'07)
WHAT IS DATA MINING?  The process of automatically extracting useful information from large amounts of data.  Uses traditional data analysis techniques.
Arizona State University1 Fast Mining of a Network of Coevolving Time Series Wei FanHanghang TongPing JiYongjie Cai.
Kalman Filter and Data Streaming Presented By :- Ankur Jain Department of Computer Science 7/21/03.
Carnegie Mellon School of Computer Science Forecasting with Cyber-physical Interactions in Data Centers Lei Li PDL Seminar 9/28/2011.
Forecasting with Cyber-physical Interactions in Data Centers (part 3)
Computing and Compressive Sensing in Wireless Sensor Networks
The Linear Dynamic System and its application in moction capture
Parallel ODETLAP for Terrain Compression and Reconstruction
Fast Approximate Query Answering over Sensor Data with Deterministic Error Guarantees Chunbin Lin Joint with Etienne Boursier, Jacque Brito, Yannis Katsis,
On Optimal Distributed Kalman Filtering in Non-ideal Situations
A Time Series Representation Framework Based on Learned Patterns
Pre Proposal Time Series Learning completed work
Automatic Segmentation of Data Sequences
Finding Periodic Discrete Events in Noisy Streams
Overview: Chapter 2 Localization and Tracking
Nome Sobrenome. Time time time time time time..
Presentation transcript:

Lei Li Computer Science Department Carnegie Mellon University Pre Proposal Time Series Learning completed work 11/27/2015

Outline Completed Work –Mining w/ Missing Value –Parallel Learning –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 2

Outline Completed Work –Mining w/ Missing Value Motivation Problem Definition Proposed Method Results –Parallel Learning –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 3

Occlusion in Motion Capture Motion Capture: –Markers on human actors –Cameras used to track the 3D positions –Duration: –93 dimensional body-local coordinates after preprocessing (31-bones) Challenge: –Occlusions Other general scenario: –Missing value in Sensor data: Out of battery, transmission error, etc –Unable to observe, e.g. historical/future observation 4 From mocap.cs.cmu.edu

Time Marker/Sensor blackout Given To find algorithm for: –mining hidden variables and evolving patterns –recovering missing values –compression/summarization –segmentation Problem Definition 5

Time Marker/Sensor blackout Problem Definition (cont’) Want the algorithms to be: –Effective –Scalable: to duration of sequences –Blackouts –Automatic: no/few parameters to be set 6

Proposed Method: Intuition 7 Left Hand Right Hand missing Recover using Correlation among multiple markers

Proposed Method: Intuition 8 Left Hand Right Hand missing Recover using Dynamics temporal moving pattern

Underlying Model 9 z 1 = z 0 +ω 0 z n+1 = F∙z n +ω n x n = G∙z n +ε n Z1Z1 Z1Z1 Z2Z2 Z2Z2 Z3Z3 Z3Z3 Z4Z4 Z4Z4 X1X1 X1X1 X2X2 X2X2 X3X3 X3X3 X4X4 X4X4 N (F∙z 1, Λ) N (z 0, Γ) N (G∙z 3, Σ) N (F∙z 2, Λ) N (G∙z 1, Σ) N (G∙z 2, Σ) N (G∙z 4, Σ) N (F∙z 3, Λ) N (F∙z 4, Λ) … Model parameters: θ={ z 0, Γ, F, Λ, G, Σ} Use Linear Dynamical Systems to model whole sequence.

DynaMMo Intuition How to recover the missing values? 10

DynaMMo: How to Recover? 11 ×

DynaMMo: How to Recover? 12 × × ×

DynaMMo: How to Recover? 13 × × × ×

DynaMMo: How to Recover? 14 × × × × ×

DynaMMo: How to Recover? 15 × × × × × ×

How to Compress Naive idea #1: use SVD Naive idea #2: store parameters of LDS Naive idea #3: store parameters of LDS and all hidden variables (expectation) Proposed Methods: use check points –Fixed hop –Optimal (dynamic programming) –Near optimal (adaptive) 16

DynaMMo Compression: Intuition 17 observations w/ missing values get hidden variables and model parameters keep only a (best) portion of them Same idea could be used in segmentation and forecasting and

DynaMMo w/ Optimal Compression: Intuition 18 observations w/ missing values get hidden variables and model parameters keep only a (best) portion of them Same idea could be used in segmentation and forecasting and

How to Segment Segment by threshold on prediction error 19 original data reconstruction error

Outline Completed Work –Mining Missing Value Motivation Problem Definition Proposed Method Results –Parallel Learning –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 20

Results – Better Missing Recovery 21 Reconstructionerror occlusion length Ideal Proposed MSVD

Results – Better Compression 22 Compression ratio error DynaMMo w/ optimal compression Ideal

Results – Segmentation Find the transition during “running” to “stop”. 23 left hip left femur reconstruction error

Outline Completed Work –Mining Missing Value Contribution: the most accurate mining algorithms for TS with missing value so far. –Parallel Learning –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 24

Outline Completed Work –Mining Missing Value –Parallel Learning Motivation Problem Definition Proposed Method Results –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 25

Challenge for Learning LDS on SMP 26 Time * Measured Estimated Position of left elbow step 1

Challenge for Learning LDS on SMP 27 Time * Measured Estimated Position of left elbow step 2 * Intuition: #2 may be close to #1

Challenge for Learning LDS on SMP 28 Time * Measured Estimated Position of left elbow * * * * * Forward

Challenge for Learning LDS on SMP 29 Time * Measured Estimated Position of left elbow Backward * * * * * *

Challenge for Learning LDS on SMP 30 Time * Measured Estimated Position of left elbow Backward * * * * * * * * * *

Challenge for Learning LDS on SMP 31 Time * Measured Reconstructed Signal Position of left elbow Backward * * * * * * * * * *

Outline Completed Work –Mining Missing Value –Parallel Learning Motivation Problem Definition Proposed Method Results –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 32

Problem Definition 33 Problem: –Given a sequence of numbers, find the best model parameters for Linear Dynamical System Goal: –Achieve ~ linear speed up on multi-core Assumption: –shared memory architecture

Cut-And-Stitch Intuition 34 z1z1 z1z1 y1y1 y1y1 y2y2 y2y2 z3z3 z3z3 y3y3 y3y3 z4z4 z4z4 y4y4 y4y4 z5z5 z5z5 y5y5 y5y5 y6y6 y6y6 z2z2 z2z2 z6z6 z6z6 υ2,Φ2,η2,Ψ2υ2,Φ2,η2,Ψ2 υ1,Φ1,η1,Ψ1υ1,Φ1,η1,Ψ1 z1z1 z1z1 y1y1 y1y1 y2y2 y2y2 z' 2 z2z2 z2z2 z3z3 z3z3 y3y3 y3y3 z4z4 z4z4 y4y4 y4y4 z' 4 z5z5 z5z5 y5y5 y5y5 y6y6 y6y6 z6z6 z6z6 υ3,Φ3,η3,Ψ3υ3,Φ3,η3,Ψ3 reconcile later Cut start computation without feedback from previous node Stitch

Cut-And-Stitch: illustration 35 Time * Measured Estimated Position of left elbow * * Cut-Forward 1

Cut-And-Stitch: illustration 36 Time * Measured Estimated Position of left elbow * * * * * Cut-Forward 2

Cut-And-Stitch: illustration 37 Time * Measured Position of left elbow * * * * * * * * Cut-Backward

Cut-And-Stitch: illustration 38 Time * Measured Position of left elbow * * * * * * * * Stitch * * reconciliation

Outline Completed Work –Mining Missing Value –Parallel Learning Motivation Problem Definition Proposed Method Results –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 39

Near Linear Speedup 40 speedup # of processors ideal Dataset: CMU Mocap #16 mocap.cs.cmu.edu

No loss of accuracy 41 ~ IDENTICAL

Outline Completed Work –Mining Missing Value –Parallel Learning Contribution: the 1 st parallel algorithm for learning LDS –Natural Motion Stitching Ongoing & Proposed Work Other Related Work 42

Outline Completed Work –Mining Missing Value –Parallel Learning –Natural Motion Stitching Motivation Problem Definition Proposed Method Results Ongoing & Proposed Work Other Related Work 43

How to generate new natural motion? Computer Game industry –E.g. generate a smooth “goal kick” in soccer game Movie Industry –E.g. Shrek 44

A Database Approach Select best stitchable segments from a set of basic motion pieces and generate new natural motions 45

Problem Definition Given two motion-capture sequences that are to be stitched together, how can we assess the goodness of the stitching? Euclidean will fail Best stitchable motion?

Outline Completed Work –Mining Missing Value –Parallel Learning –Natural Motion Stitching Motivation Problem Definition Proposed Method Results Ongoing & Proposed Work Other Related Work 47

Minimizing Stitching Effort Minimize the energy/effort spent by human during the transition Compute the effort using dynamics from Kalman Filters 48

Result 49

Outline Completed Work –Mining Missing Value –Parallel Learning –Natural Motion Stitching Contribution: A principled distance function for motion stitching Ongoing & Proposed Work Other Related Work 50

Ongoing Work Time series clustering by fingerprinting Bone length constrained occlusion filling DynaMMo+, enhanced algorithm for missing value recovery Mining multiple categorical streams 51

Proposed Work Multi-resolution learning for long time series Data center thermal management by mining sensor data 52

Roadmap: Time Series Learning and Mining 53 Motion stitching Parallel LDS Learning (cut and stitching) TS Clustering Multi-resolution learning Non Constrained Constrained Complete Missing DynaMMo DynaMMo+ Bone Length Constrained Occlusion Filling DC modeling (proposed)

Reference [Li 2009] DynaMMo: Mining and Summarization of Coevolving Sequences with Missing Values. KDD '09. [Li 2008c] Cut-and-stitch: efficient parallel learning of linear dynamical systems on SMPs. KDD '08. [Li 2008l] Laziness is a virtue: Motion stitching using effort minimization. Eurographics